Gadicherla Ashish K, Stowe David F, Antholine William E, Yang Meiying, Camara Amadou K S
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Biochim Biophys Acta. 2012 Mar;1817(3):419-29. doi: 10.1016/j.bbabio.2011.11.021. Epub 2011 Dec 8.
Ranolazine, an anti-anginal drug, is a late Na(+) channel current blocker that is also believed to attenuate fatty acid oxidation and mitochondrial respiratory complex I activity, especially during ischemia. In this study, we investigated if ranolazine's protective effect against cardiac ischemia/reperfusion (IR) injury is mediated at the mitochondrial level and specifically if respiratory complex I (NADH Ubiquinone oxidoreductase) function is protected. We treated isolated and perfused guinea pig hearts with ranolazine just before 30 min ischemia and then isolated cardiac mitochondria at the end of 30 min ischemia and/or 30 min ischemia followed by 10 min reperfusion. We utilized spectrophotometric and histochemical techniques to assay complex I activity, Western blot analysis for complex I subunit NDUFA9, electron paramagnetic resonance for activity of complex I Fe-S clusters, enzyme linked immuno sorbent assay (ELISA) for determination of protein acetylation, native gel histochemical staining for respiratory supercomplex assemblies, and high pressure liquid chromatography for cardiolipin integrity; cardiac function was measured during IR. Ranolazine treated hearts showed higher complex I activity and greater detectable complex I protein levels compared to untreated IR hearts. Ranolazine treatment also led to more normalized electron transfer via Fe-S centers, supercomplex assembly and cardiolipin integrity. These improvements in complex I structure and function with ranolazine were associated with improved cardiac function after IR. However, these protective effects of ranolazine are not mediated by a direct action on mitochondria, but rather indirectly via cytosolic mechanisms that lead to less oxidation and better structural integrity of complex I.
雷诺嗪是一种抗心绞痛药物,是一种晚期钠离子通道电流阻滞剂,人们还认为它能减弱脂肪酸氧化和线粒体呼吸复合体I的活性,尤其是在缺血期间。在本研究中,我们调查了雷诺嗪对心脏缺血/再灌注(IR)损伤的保护作用是否在线粒体水平介导,特别是呼吸复合体I(NADH泛醌氧化还原酶)的功能是否得到保护。我们在30分钟缺血前用雷诺嗪处理分离并灌注的豚鼠心脏,然后在30分钟缺血结束时和/或30分钟缺血后再灌注10分钟后分离心脏线粒体。我们利用分光光度法和组织化学技术检测复合体I的活性,用蛋白质免疫印迹法检测复合体I亚基NDUFA9,用电子顺磁共振检测复合体I铁硫簇的活性,用酶联免疫吸附测定法(ELISA)测定蛋白质乙酰化,用天然凝胶组织化学染色检测呼吸超复合体组装,用高压液相色谱检测心磷脂完整性;在缺血/再灌注期间测量心脏功能。与未处理的缺血/再灌注心脏相比,用雷诺嗪处理的心脏显示出更高的复合体I活性和更高的可检测到的复合体I蛋白水平。雷诺嗪治疗还导致通过铁硫中心的电子传递、超复合体组装和心磷脂完整性更加正常化。雷诺嗪对复合体I结构和功能的这些改善与缺血/再灌注后心脏功能的改善相关。然而,雷诺嗪的这些保护作用不是通过对线粒体的直接作用介导的,而是通过胞质机制间接介导的,这些机制导致复合体I的氧化减少和结构完整性更好。