Suppr超能文献

促氧化剂六价铬(VI)抑制支气管上皮细胞中的线粒体复合物 I、复合物 II 和 aconitase:Fe-S 蛋白的 EPR 标志物。

The pro-oxidant chromium(VI) inhibits mitochondrial complex I, complex II, and aconitase in the bronchial epithelium: EPR markers for Fe-S proteins.

机构信息

Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

Free Radic Biol Med. 2010 Dec 15;49(12):1903-15. doi: 10.1016/j.freeradbiomed.2010.09.020. Epub 2010 Sep 27.

Abstract

Hexavalent chromium (Cr(VI)) compounds (e.g., chromates) are strong oxidants that readily enter cells, where they are reduced to reactive Cr species that also facilitate reactive oxygen species generation. Recent studies demonstrated inhibition and oxidation of the thioredoxin system, with greater effects on mitochondrial thioredoxin (Trx2). This implies that Cr(VI)-induced oxidant stress may be especially directed at the mitochondria. Examination of other redox-sensitive mitochondrial functions showed that Cr(VI) treatments that cause Trx2 oxidation in human bronchial epithelial cells also result in pronounced and irreversible inhibition of aconitase, a TCA cycle enzyme that has an iron-sulfur (Fe-S) center that is labile with respect to certain oxidants. The activities of electron transport complexes I and II were also inhibited, whereas complex III was not. Electron paramagnetic resonance (EPR) studies of samples at liquid helium temperature (10K) showed a strong signal at g=1.94 that is consistent with the inhibition of electron flow through complex I and/or II. A signal at g=2.02 was also observed, which is consistent with oxidation of the Fe-S center of aconitase. The g=1.94 signal was particularly intense and remained after extracellular Cr(VI) was removed, whereas the g=2.02 signal declined in intensity after Cr(VI) was removed. A similar inhibition of these activities and analogous EPR findings were noted in bovine airways treated ex vivo with Cr(VI). Overall, the data support the hypothesis that Cr(VI) exposure has deleterious effects on a number of redox-sensitive core mitochondrial proteins. The g=1.94 signal could prove to be an important biomarker for oxidative damage resulting from Cr(VI) exposure. The EPR spectra simultaneously showed signals for Cr(V) and Cr(III), which verify Cr(VI) exposure and its intracellular reductive activation.

摘要

六价铬(Cr(VI))化合物(如铬酸盐)是强氧化剂,很容易进入细胞,在细胞内被还原为具有反应性的 Cr 物种,从而促进活性氧的产生。最近的研究表明,硫氧还蛋白系统受到抑制和氧化,其中对线粒体硫氧还蛋白(Trx2)的影响更大。这意味着 Cr(VI)诱导的氧化应激可能特别针对线粒体。对其他氧化还原敏感的线粒体功能的检查表明,在人支气管上皮细胞中导致 Trx2 氧化的 Cr(VI)处理也会导致三羧酸 (TCA) 循环酶顺乌头酸酶的显著和不可逆抑制,该酶具有对某些氧化剂不稳定的铁-硫 (Fe-S) 中心。电子传递复合物 I 和 II 的活性也受到抑制,而复合物 III 不受影响。在液氦温度 (10K) 下对样品进行电子顺磁共振 (EPR) 研究表明,在 g=1.94 处有一个很强的信号,与电子流通过复合物 I 和/或 II 的抑制一致。还观察到一个 g=2.02 的信号,与顺乌头酸酶的 Fe-S 中心的氧化一致。g=1.94 信号特别强烈,在去除细胞外 Cr(VI)后仍然存在,而在去除 Cr(VI)后 g=2.02 信号的强度下降。在体外用 Cr(VI)处理的牛气道中也观察到这些活性的类似抑制和类似的 EPR 发现。总体而言,这些数据支持 Cr(VI)暴露对许多氧化还原敏感的核心线粒体蛋白产生有害影响的假说。g=1.94 信号可能成为 Cr(VI)暴露导致氧化损伤的重要生物标志物。EPR 光谱同时显示了 Cr(V)和 Cr(III)的信号,这证实了 Cr(VI)暴露及其细胞内还原激活。

相似文献

1
The pro-oxidant chromium(VI) inhibits mitochondrial complex I, complex II, and aconitase in the bronchial epithelium: EPR markers for Fe-S proteins.
Free Radic Biol Med. 2010 Dec 15;49(12):1903-15. doi: 10.1016/j.freeradbiomed.2010.09.020. Epub 2010 Sep 27.
2
Hexavalent chromium causes the oxidation of thioredoxin in human bronchial epithelial cells.
Toxicology. 2008 Apr 18;246(2-3):222-33. doi: 10.1016/j.tox.2008.01.017. Epub 2008 Feb 2.
4
The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells.
Free Radic Biol Med. 2009 Nov 15;47(10):1477-85. doi: 10.1016/j.freeradbiomed.2009.08.015. Epub 2009 Aug 22.
5
Treatment of Cells and Tissues with Chromate Maximizes Mitochondrial 2Fe2S EPR Signals.
Int J Mol Sci. 2019 Mar 6;20(5):1143. doi: 10.3390/ijms20051143.
6
Reductive activation of hexavalent chromium by human lung epithelial cells: generation of Cr(V) and Cr(V)-thiol species.
J Inorg Biochem. 2008 Jul;102(7):1449-62. doi: 10.1016/j.jinorgbio.2007.12.030. Epub 2008 Jan 8.
7
Redox-dependent modulation of aconitase activity in intact mitochondria.
Biochemistry. 2003 Dec 23;42(50):14846-55. doi: 10.1021/bi0353979.
10
The effects of chromium(VI) on the thioredoxin system: implications for redox regulation.
Free Radic Biol Med. 2012 May 15;52(10):2091-107. doi: 10.1016/j.freeradbiomed.2012.03.013. Epub 2012 Apr 18.

引用本文的文献

1
From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death.
Apoptosis. 2024 Jun;29(5-6):586-604. doi: 10.1007/s10495-023-01927-0. Epub 2024 Feb 7.
3
Non-redox cycling mechanisms of oxidative stress induced by PM metals.
Free Radic Biol Med. 2020 May 1;151:26-37. doi: 10.1016/j.freeradbiomed.2019.12.027. Epub 2019 Dec 23.
4
Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses.
Free Radic Biol Med. 2020 Feb 1;147:167-174. doi: 10.1016/j.freeradbiomed.2019.12.020. Epub 2019 Dec 23.
5
Impairment of Mitochondrial-Nuclear Cross Talk in Lymphocytes Exposed to Landfill Leachate.
Environ Health Insights. 2019 Apr 2;13:1178630219839013. doi: 10.1177/1178630219839013. eCollection 2019.
6
Treatment of Cells and Tissues with Chromate Maximizes Mitochondrial 2Fe2S EPR Signals.
Int J Mol Sci. 2019 Mar 6;20(5):1143. doi: 10.3390/ijms20051143.
7
The Role of Oxidative Stress and Bioenergetic Dysfunction in Sulfite Oxidase Deficiency: Insights from Animal Models.
Neurotox Res. 2019 Feb;35(2):484-494. doi: 10.1007/s12640-018-9986-z. Epub 2018 Dec 5.
9

本文引用的文献

2
Towards the molecular mechanism of respiratory complex I.
Biochem J. 2009 Dec 23;425(2):327-39. doi: 10.1042/BJ20091382.
3
The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells.
Free Radic Biol Med. 2009 Nov 15;47(10):1477-85. doi: 10.1016/j.freeradbiomed.2009.08.015. Epub 2009 Aug 22.
4
Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions.
Biochim Biophys Acta. 2009 Jun;1790(6):495-526. doi: 10.1016/j.bbagen.2009.01.014. Epub 2009 Feb 11.
6
Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species.
Biochim Biophys Acta. 2009 May;1787(5):384-92. doi: 10.1016/j.bbabio.2008.11.003. Epub 2008 Nov 14.
7
EPR and Mössbauer spectroscopy of intact mitochondria isolated from Yah1p-depleted Saccharomyces cerevisiae.
Biochemistry. 2008 Sep 16;47(37):9888-99. doi: 10.1021/bi801047q. Epub 2008 Aug 22.
9
An improved spectrophotometric method for a more specific and accurate assay of mitochondrial complex III activity.
Clin Chim Acta. 2008 Sep;395(1-2):38-41. doi: 10.1016/j.cca.2008.04.025. Epub 2008 May 7.
10
Were there any "misassignments" among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)?
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):703-10. doi: 10.1016/j.bbabio.2008.04.032. Epub 2008 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验