Baker Daniel H, Meese Tim S
School of Life and Health Sciences, Aston University, Birmingham, UK.
J Vis. 2011 Dec 16;11(14):14. doi: 10.1167/11.14.14.
Classical studies of area summation measure contrast detection thresholds as a function of grating diameter. Unfortunately, (i) this approach is compromised by retinal inhomogeneity and (ii) it potentially confounds summation of signal with summation of internal noise. The Swiss cheese stimulus of T. S. Meese and R. J. Summers (2007) and the closely related Battenberg stimulus of T. S. Meese (2010) were designed to avoid these problems by keeping target diameter constant and modulating interdigitated checks of first-order carrier contrast within the stimulus region. This approach has revealed a contrast integration process with greater potency than the classical model of spatial probability summation. Here, we used Swiss cheese stimuli to investigate the spatial limits of contrast integration over a range of carrier frequencies (1-16 c/deg) and raised plaid modulator frequencies (0.25-32 cycles/check). Subthreshold summation for interdigitated carrier pairs remained strong (∼4 to 6 dB) up to 4 to 8 cycles/check. Our computational analysis of these results implied linear signal combination (following square-law transduction) over either (i) 12 carrier cycles or more or (ii) 1.27 deg or more. Our model has three stages of summation: short-range summation within linear receptive fields, medium-range integration to compute contrast energy for multiple patches of the image, and long-range pooling of the contrast integrators by probability summation. Our analysis legitimizes the inclusion of widespread integration of signal (and noise) within hierarchical image processing models. It also confirms the individual differences in the spatial extent of integration that emerge from our approach.
经典的面积总和研究将对比度检测阈值测量为光栅直径的函数。不幸的是,(i)这种方法受到视网膜不均匀性的影响,并且(ii)它可能会将信号总和与内部噪声总和混淆。T. S. Meese和R. J. Summers(2007年)的瑞士奶酪刺激以及T. S. Meese(2010年)密切相关的巴滕贝格刺激旨在通过保持目标直径恒定并调制刺激区域内一阶载波对比度的交叉检查来避免这些问题。这种方法揭示了一种对比度整合过程,其效力比空间概率总和的经典模型更大。在这里,我们使用瑞士奶酪刺激来研究在一系列载波频率(1 - 16周/度)和升高的格子调制频率(0.25 - 32个周期/检查)范围内对比度整合的空间极限。对于交叉载波对的阈下总和在高达4至8个周期/检查时仍然很强(约4至6分贝)。我们对这些结果的计算分析表明,在(i)12个或更多载波周期或(ii)1.27度或更大的范围内,信号组合是线性的(遵循平方律转换)。我们的模型有三个总和阶段:线性感受野内的短程总和、计算图像多个斑块对比度能量的中程整合以及通过概率总和对对比度积分器进行的长程合并。我们的分析证明了在分层图像处理模型中纳入信号(和噪声)的广泛整合是合理的。它还证实了我们的方法所产生的整合空间范围的个体差异。