Suppr超能文献

通过非传统酵母毕赤酵母中天冬氨酸生物合成和 L-丝氨酸可用性的组合遗传工程,高水平生产四乙酰植鞘氨醇(TAPS)。

High-level production of tetraacetyl phytosphingosine (TAPS) by combined genetic engineering of sphingoid base biosynthesis and L-serine availability in the non-conventional yeast Pichia ciferrii.

机构信息

Goethe-University Frankfurt, Institute of Molecular Biosciences, Max-von-Laue-Strasse 9, Frankfurt, Germany.

出版信息

Metab Eng. 2012 Mar;14(2):172-84. doi: 10.1016/j.ymben.2011.12.002. Epub 2011 Dec 10.

Abstract

The non-conventional yeast Pichia ciferrii is known to secrete the sphingoid long-chain base phytosphingosine in a tetraacetylated form (TAPS). Sphingolipids are important ingredients in cosmetic applications as they play important roles in human skin. Our work aimed to improve TAPS production by genetic engineering of P. ciferrii. In the first step we improved precursor availability by blocking degradation of L-serine, which is condensed with palmitoyl-CoA by serine palmitoyltransferase in the first committed step of sphingolipid biosynthesis. Successive deletion of two genes, SHM1 and SHM2, encoding L-serine hydroxymethyltransferases, and of CHA1 encoding L-serine deaminase, resulted in a strain producing 65 mg((TAPS))g(-1)((cdw)), which is a threefold increase in comparison with the parental strain. Attempts to increase the metabolic flux into and through the L-serine biosynthesis pathway did not improve TAPS production. However, genetic engineering of the sphingolipid pathway further increased secretion of TAPS. Blocking of sphingoid long-chain base phosphorylation by deletion of the LCB kinase gene PcLCB4 resulted in a further increase in TAPS production by 78% and significant secretion of the direct precursor of phytosphingosine, sphinganin, in a triacetylated form (TriASa). Overproduction of two serine palmitoyltransferase subunits, Lcb1 and Lcb2, together with a deletion of the gene ORM12 encoding a putative negative regulator of sphingolipid synthesis resulted in a strain producing 178 mg((TAPS))g(-1)((cdw)). Additional overproduction of the C4-hydroxylase Syr2 converting sphinganine to phytosphingosine reduced TriASa production and further improved TAPS production. The final recombinant P. ciferrii strain produced up to 199 mg((TAPS))g(-1)((cdw)) with a maximal production rate of 8.42 mg×OD(600nm)(-1)h(-1) and a titer of about 2 g L(-1), and should be applicable for industrial TAPS production.

摘要

非常规酵母毕赤酵母已知会分泌四乙酰化形式的鞘氨醇长链碱基植物鞘氨醇(TAPS)。鞘脂类是化妆品应用中的重要成分,因为它们在人体皮肤中起着重要作用。我们的工作旨在通过毕赤酵母的基因工程来提高 TAPS 的产量。在第一步中,我们通过阻断 L-丝氨酸的降解来提高前体的可用性,L-丝氨酸在鞘脂生物合成的第一步中与棕榈酰辅酶 A 在丝氨酸棕榈酰转移酶的作用下缩合。连续缺失编码 L-丝氨酸羟甲基转移酶的 SHM1 和 SHM2 基因以及编码 L-丝氨酸脱氨酶的 CHA1 基因,导致产生 65mg((TAPS))g(-1)((cdw))的菌株,与亲本菌株相比增加了三倍。尝试增加 L-丝氨酸生物合成途径中的代谢通量并没有提高 TAPS 的产量。然而,对鞘脂途径的基因工程进一步增加了 TAPS 的分泌。通过缺失 LCB 激酶基因 PcLCB4 阻断鞘氨醇长链碱基磷酸化,使 TAPS 的产量进一步增加了 78%,并以三乙酰化形式(TriASa)显著分泌了植物鞘氨醇的直接前体,即鞘氨醇。过量表达两种丝氨酸棕榈酰转移酶亚基 Lcb1 和 Lcb2,同时缺失编码假定的鞘脂合成负调节剂的基因 ORM12,导致产生 178mg((TAPS))g(-1)((cdw))的菌株。C4-羟化酶 Syr2 的额外过表达将鞘氨醇转化为植物鞘氨醇,减少了 TriASa 的产生,并进一步提高了 TAPS 的产量。最终的重组毕赤酵母菌株最高产量可达 199mg((TAPS))g(-1)((cdw)),最大生产速率为 8.42mg×OD(600nm)(-1)h(-1),浓度约为 2g L(-1),可应用于工业 TAPS 生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验