Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Barcelona, Spain.
PLoS One. 2011;6(12):e26182. doi: 10.1371/journal.pone.0026182. Epub 2011 Dec 13.
Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK) signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells.We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM), using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer) biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization.These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch.
机械力已知可调节 Jun N-末端激酶 (JNK) 信号级联的活性。然而,先前仅通过体外检测方法分析了机械应力对 JNK 信号激活的影响。仍然不知道活细胞如何响应机械应力激活 JNK 信号级联,以及其在拉伸细胞中的功能是什么。
我们通过荧光寿命成像显微镜 (FLIM) 实时评估了果蝇细胞中 JNK 途径的活性,使用了依赖于分子内磷酸化的 dJun-FRET(荧光共振能量转移)生物传感器。我们发现,定量 FRET-FLIM 分析和共聚焦显微镜显示, Drosophila S2R+细胞对机械拉伸有持续的 dJun-FRET 生物传感器激活和稳定的形态变化。此外,这些细胞在不同的基质上表现出不同水平的 JNK 活性,这与细胞形态、整合素表达和焦点粘连组织的差异有关。
这些数据表明,细胞骨架和基质附着的改变可能作为 JNK 信号的调节剂,并且 JNK 活性可能反馈调节细胞骨架和细胞黏附。我们发现这个动态系统具有高度的可塑,在静止状态下,焦点粘连处的整合素和 talin 是抑制 JNK 活性的关键因素,而多方向的静态拉伸导致整合素依赖的、可能不依赖于 talin 的 Jun 传感器激活。此外,我们的数据表明,JNK 活性必须与其他信号元件协调,以调节与拉伸相关的细胞骨架和细胞形状重塑。