Suppr超能文献

生长域上的随机反应与扩散:理解稳健模式形成的崩溃

Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation.

作者信息

Woolley Thomas E, Baker Ruth E, Gaffney Eamonn A, Maini Philip K

机构信息

Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046216. doi: 10.1103/PhysRevE.84.046216. Epub 2011 Oct 28.

Abstract

Many biological patterns, from population densities to animal coat markings, can be thought of as heterogeneous spatiotemporal distributions of mobile agents. Many mathematical models have been proposed to account for the emergence of this complexity, but, in general, they have consisted of deterministic systems of differential equations, which do not take into account the stochastic nature of population interactions. One particular, pertinent criticism of these deterministic systems is that the exhibited patterns can often be highly sensitive to changes in initial conditions, domain geometry, parameter values, etc. Due to this sensitivity, we seek to understand the effects of stochasticity and growth on paradigm biological patterning models. In this paper, we extend spatial Fourier analysis and growing domain mapping techniques to encompass stochastic Turing systems. Through this we find that the stochastic systems are able to realize much richer dynamics than their deterministic counterparts, in that patterns are able to exist outside the standard Turing parameter range. Further, it is seen that the inherent stochasticity in the reactions appears to be more important than the noise generated by growth, when considering which wave modes are excited. Finally, although growth is able to generate robust pattern sequences in the deterministic case, we see that stochastic effects destroy this mechanism for conferring robustness. However, through Fourier analysis we are able to suggest a reason behind this lack of robustness and identify possible mechanisms by which to reclaim it.

摘要

许多生物模式,从种群密度到动物皮毛斑纹,都可以被视为移动主体的异质时空分布。已经提出了许多数学模型来解释这种复杂性的出现,但一般来说,它们由确定性微分方程系统组成,没有考虑种群相互作用的随机性。对这些确定性系统的一个特别相关的批评是,所展示的模式往往对初始条件、域几何形状、参数值等的变化高度敏感。由于这种敏感性,我们试图理解随机性和增长对典型生物模式形成模型的影响。在本文中,我们扩展了空间傅里叶分析和增长域映射技术,以涵盖随机图灵系统。通过这样做,我们发现随机系统能够实现比其确定性对应物丰富得多的动力学,因为模式能够存在于标准图灵参数范围之外。此外,可以看出,在考虑激发哪些波模式时,反应中固有的随机性似乎比增长产生的噪声更重要。最后,虽然增长在确定性情况下能够产生稳健的模式序列,但我们看到随机效应破坏了这种赋予稳健性的机制。然而,通过傅里叶分析,我们能够提出这种缺乏稳健性背后的原因,并确定恢复稳健性的可能机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验