Suppr超能文献

在开放的反应扩散系统中隔离模式。

Isolating Patterns in Open Reaction-Diffusion Systems.

机构信息

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.

Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00, Praha, Czech Republic.

出版信息

Bull Math Biol. 2021 Jun 4;83(7):82. doi: 10.1007/s11538-021-00913-4.

Abstract

Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of 'open' reaction-diffusion systems often neglect the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.

摘要

现实中,能够控制空间和时空模式形成的反应扩散现象的例子很少是化学或热力学上的孤立系统。然而,即使是“开放”反应扩散系统的表述也往往忽略了域边界的作用。大多数封闭反应扩散系统的理想化采用无通量边界条件,而且模式通常会在这些边界上或沿着这些边界形成。受胚胎发育中空间形态出现相关的图案形成领域边界的启发,我们提出了一组用于两种物质反应扩散系统的混合边界条件,该系统在各种不同的反应动力学下,在远离域边界的地方形成不均匀解,而在边界附近则有规定的均匀状态。我们表明,这些边界条件可以从一个更大的非均匀场中导出,这表明如果细胞信号或介质的其他性质在空间中发生变化,这些条件可以自然出现。我们解释了这种模式定位背后的基本机制,并证明它可以在一维、二维和三维中捕获大范围的局域模式,并且这个框架可以应用于涉及两种以上物质的系统。此外,所提出的边界条件导致域内部的模式更加对称,并合理地捕捉到发育系统中更真实的边界。最后,我们表明这些孤立的模式对初始条件的波动更具鲁棒性,并且它们通过几何形状提供了有趣的模式选择可能性,与已知的选择机制不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c78e/8178156/43f5ab3df9d7/11538_2021_913_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验