Braunstein A, Kayhan F, Zecchina R
Dipartimento di Fisica and Center for Computational Sciences, Politecnico di Torino, Torino, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051111. doi: 10.1103/PhysRevE.84.051111. Epub 2011 Nov 14.
In this paper we discuss a novel data compression technique for binary symmetric sources based on the cavity method over GF(q), the Galois Field of order q. We present a scheme of low complexity and near-optimal empirical performance. The compression step is based on a reduction of a sparse low-density parity-check code over GF(q) and is done through the so-called reinforced belief-propagation equations. These reduced codes appear to have a nontrivial geometrical modification of the space of codewords, which makes such compression computationally feasible. The computational complexity is O(dnqlog(2)q) per iteration, where d is the average degree of the check nodes and n is the number of bits. For our code ensemble, decompression can be done in a time linear in the code's length by a simple leaf-removal algorithm.
在本文中,我们讨论了一种基于GF(q)(阶为q的伽罗瓦域)上的腔方法的用于二元对称信源的新型数据压缩技术。我们提出了一种低复杂度且具有接近最优经验性能的方案。压缩步骤基于GF(q)上稀疏低密度奇偶校验码的约简,并通过所谓的增强置信传播方程来完成。这些约简后的码似乎对码字空间有非平凡的几何修改,这使得这种压缩在计算上可行。每次迭代的计算复杂度为O(dnqlog(2)q),其中d是校验节点的平均度数,n是比特数。对于我们的码集,可以通过一种简单的去叶算法在与码长成线性关系的时间内完成解压。