Suppr超能文献

Closest-vector problem and the zero-temperature p-spin landscape for lossy compression.

作者信息

Braunstein Alfredo, Budzynski Louise, Crotti Stefano, Ricci-Tersenghi Federico

机构信息

DISAT, Politecnico di Torino, Corso Duca Degli Abruzzi 24, I-10129 Torino, Italy.

Italian Institute for Genomic Medicine, IRCCS Candiolo, SP-142, I-10060, Candiolo (TO), Italy.

出版信息

Phys Rev E. 2022 Nov;106(5-1):054101. doi: 10.1103/PhysRevE.106.054101.

Abstract

We consider a high-dimensional random constrained optimization problem in which a set of binary variables is subjected to a linear system of equations. The cost function is a simple linear cost, measuring the Hamming distance with respect to a reference configuration. Despite its apparent simplicity, this problem exhibits a rich phenomenology. We show that different situations arise depending on the random ensemble of linear systems. When each variable is involved in at most two linear constraints, we show that the problem can be partially solved analytically, in particular we show that upon convergence, the zero-temperature limit of the cavity equations returns the optimal solution. We then study the geometrical properties of more general random ensembles. In particular we observe a range in the density of constraints at which the system enters a glassy phase where the cost function has many minima. Interestingly, the algorithmic performances are only sensitive to another phase transition affecting the structure of configurations allowed by the linear constraints. We also extend our results to variables belonging to GF(q), the Galois field of order q. We show that increasing the value of q allows to achieve a better optimum, which is confirmed by the replica-symmetric cavity method predictions.

摘要

相似文献

1
Closest-vector problem and the zero-temperature p-spin landscape for lossy compression.
Phys Rev E. 2022 Nov;106(5-1):054101. doi: 10.1103/PhysRevE.106.054101.
3
Efficient data compression from statistical physics of codes over finite fields.基于有限域上码的统计物理的高效数据压缩。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051111. doi: 10.1103/PhysRevE.84.051111. Epub 2011 Nov 14.
5
Typical kernel size and number of sparse random matrices over Galois fields: a statistical physics approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061123. doi: 10.1103/PhysRevE.77.061123. Epub 2008 Jun 17.
7
Phase transition for cutting-plane approach to vertex-cover problem.顶点覆盖问题割平面法的相变
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041128. doi: 10.1103/PhysRevE.86.041128. Epub 2012 Oct 15.
8
Statistical mechanics of the quantum K -satisfiability problem.量子K可满足性问题的统计力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061128. doi: 10.1103/PhysRevE.78.061128. Epub 2008 Dec 24.
9
Hard-sphere jamming through the lens of linear optimization.从线性优化视角看硬球堵塞
Phys Rev E. 2022 Nov;106(5-2):055310. doi: 10.1103/PhysRevE.106.055310.
10
Cavity approach to the Sourlas code system.索拉斯编码系统的空洞方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056113. doi: 10.1103/PhysRevE.80.056113. Epub 2009 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验