Suppr超能文献

初值发电机问题的变分资料同化

Variational data assimilation for the initial-value dynamo problem.

作者信息

Li Kuan, Jackson Andrew, Livermore Philip W

机构信息

Institute of Geophysics, ETH Zurich, Zurich, Switzerland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056321. doi: 10.1103/PhysRevE.84.056321. Epub 2011 Nov 23.

Abstract

The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries.

摘要

在地球表面观测到的地磁场长期变化是由地球流体核心中发生的复杂磁流体动力学过程引起的。分析这个系统的一种方法是通过变分资料同化技术,将数据与系统的基础动力学模型结合使用,这与气象学和海洋学中使用的方法非常相似。目的是找到一个最优初始条件,使系统的轨迹与观测结果一致。将地球核心视为一个发生对流的导电流体球体,我们推导了控制动力学系统的磁流体动力学方程的连续伴随形式,以及适用于全谱方法的相应数值算法。这些伴随方程能够对决定系统演化的初始条件进行计算快速的迭代改进。初始条件取决于诸如整个球体中的磁场等物理量的三维形式。对于磁场,伴随磁场的无散条件守恒要求引入一个满足零边界条件的伴随压力项。因此我们发现,求解正向和伴随发电机系统需要不同的数值算法。在本文中,我们开发了一种有效的数值算法来解决这个问题,并针对全球的两个示例问题进行了测试:一个是具有规定速度场的运动学问题,另一个与霍尔效应发电机相关,表现出相当大的非线性。该算法具有可靠的数值精度和稳定性。使用本文的解析和数值技术,伴随发电机系统可以直接求解,计算复杂度与求解正向问题所需的计算复杂度相同。这些数值技术为最终应用于几个世纪时间尺度上的地磁场观测奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验