Suppr超能文献

共振耗散系统研究中绝热不变量方法的修正

Modification of the adiabatic invariants method in the studies of resonant dissipative systems.

作者信息

Tokman Mikhail, Erukhimova Maria

机构信息

Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056610. doi: 10.1103/PhysRevE.84.056610. Epub 2011 Nov 23.

Abstract

We study the system of equations for the canonically conjugate variables p and q specified by the one-dimensional Hamiltonian H=H(p,q,Λ(1),...,Λ(N)) dependent on Nself-consistent slightly changing parameters obeying the equations: Λ(n)=εf(n)(Λ(1),...,Λ(N),p,q). A broad range of oscillatory and wave processes with weak dissipation is described by analogous systems. The general method of adiabatic invariant construction for this system is proposed. Self-consistent averaged equations for the evolution of the action integral and the parameters Λ(n) are obtained. The constructed theory is applied to a generalized model of the nonlinear resonance. The autoresonance (phase locking) regime of decay parametric instability in a dissipative medium is revealed.

摘要

我们研究由一维哈密顿量(H = H(p,q,\Lambda^{(1)},\cdots,\Lambda^{(N)}))所确定的正则共轭变量(p)和(q)的方程组,该哈密顿量依赖于(N)个服从方程(\Lambda^{(n)}=\varepsilon f^{(n)}(\Lambda^{(1)},\cdots,\Lambda^{(N)},p,q))的自洽微变参数。类似的系统描述了具有弱耗散的广泛振荡和波动过程。提出了该系统绝热不变量构建的一般方法。得到了作用积分和参数(\Lambda^{(n)})演化的自洽平均方程。将构建的理论应用于非线性共振的广义模型。揭示了耗散介质中衰减参量不稳定性的自共振(锁相) regime 。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验