Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, D-04107 Leipzig, Germany.
Neuropharmacology. 2012 Mar;62(4):1756-66. doi: 10.1016/j.neuropharm.2011.12.001. Epub 2011 Dec 13.
There is no in situ evidence hitherto for a modulation by ATP of the glutamatergic excitatory transmission onto medium spiny neurons (MSNs) in the rat striatum. In order to resolve this question, we used the patch-clamp technique in brain slice preparations to record excitatory postsynaptic currents (EPSCs) evoked by intrastriatal electrical stimulation and applied N-methyl-d-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to activate transmembrane currents of MSNs. In the absence of external Mg(2+), ATP caused a higher maximum inhibition of the EPSCs than adenosine. Only P1 (A(1)), but not P2 receptor antagonists interfered with the effects of both ATP and adenosine. Moreover, A(1) receptor antagonists were less potent in blocking the inhibition by ATP than that by adenosine. Eventually, adenosine deaminase (ADA) almost abolished the adenosine-induced inhibition, but only moderately decreased the ATP-induced inhibition. Antagonists of A(1) receptors (but not of P2 receptors) counteracted the depression by ATP of the current responses to exogenous NMDA, without altering those to AMPA. It is suggested that ATP indirectly, via its degradation product adenosine, stimulates presynaptic inhibitory A(1) receptors situated at glutamatergic nerve terminals of striatal afferents; these nerve terminals are devoid of P2 receptors. However, ATP, in contrast to adenosine, also activates postsynaptic A(1) receptors at the MSN neurons themselves. The resulting negative interaction with NMDA receptors requires localized extracellular catabolism of ATP by ectonucleotidases.
迄今为止,尚无原位证据表明三磷酸腺苷(ATP)可调节大鼠纹状体中间神经元(MSN)的谷氨酸能兴奋性传递。为了解决这个问题,我们使用脑片制备中的膜片钳技术记录由纹状体内电刺激引起的兴奋性突触后电流(EPSC),并施加 N-甲基-D-天冬氨酸(NMDA)或α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)以激活 MSN 的跨膜电流。在不存在外部 Mg2+的情况下,ATP 引起的 EPSC 最大抑制作用大于腺苷。只有 P1(A1)受体拮抗剂,而不是 P2 受体拮抗剂,会干扰 ATP 和腺苷的作用。此外,A1 受体拮抗剂对 ATP 抑制的阻断作用比对腺苷抑制的阻断作用弱。最终,腺苷脱氨酶(ADA)几乎完全消除了腺苷引起的抑制作用,但仅适度降低了 ATP 引起的抑制作用。A1 受体拮抗剂(而非 P2 受体拮抗剂)拮抗了 ATP 对 NMDA 引起的电流反应的抑制作用,而不改变对 AMPA 的抑制作用。这表明 ATP 通过其降解产物腺苷间接刺激位于纹状体传入神经末梢的谷氨酸能神经递质的突触前抑制性 A1 受体;这些神经末梢缺乏 P2 受体。然而,与腺苷相反,ATP 还可激活自身 MSN 神经元上的突触后 A1 受体。与 NMDA 受体的这种负相互作用需要通过细胞外核苷酸酶对 ATP 进行局部细胞外代谢。