Suppr超能文献

分析 rd10 视网膜变性模型中的 RPE 薄片。

Analysis of the RPE sheet in the rd10 retinal degeneration model.

机构信息

Department of Ophthalmology, Emory University, 1365B Clifton Road NE, TEC-B5602, Atlanta, GA 30322, USA.

出版信息

Adv Exp Med Biol. 2012;723:641-7. doi: 10.1007/978-1-4614-0631-0_81.

Abstract

BACKGROUND

The normal RPE sheet in the C57BL/6J mouse is subclassified into two major tiling patterns: a regular generally hexagonal array covering most of the surface and a “soft network” near the ciliary body made of irregularly shaped cells. Physics models predict these two patterns based on contractility and elasticity of the RPE cell, and strength of cellular adhesion between cells.

HYPOTHESIS

We hypothesized and identified major changes in RPE regular hexagonal tiling pattern in rd10 compared to C57BL/6J mice.

RESULTS

In rd10 mice, RPE sheet damage was extensive but occurred later than expected, after most retinal degeneration was complete. RPE sheet changes occur in zones with a bullseye pattern. In the posterior zone, around the optic nerve, RPE cells take on larger irregular and varied shapes to maintain an intact monolayer. In mid periphery, RPE cells have a compressed or convoluted morphology that progress into ingrown layers of RPE under the retina. Cells in the periphery maintain their shape and size until the late stages of the RPE reorganization. The number of neighboring cells varies widely depending on zone and progression. RPE morphology continues to deteriorate after the photoreceptors have degenerated.

CONCLUSIONS

The RPE cells are bystanders to photoreceptor degeneration in the rd10 model, and the collateral damage to the RPE results in changes in morphology as early as 30 days old. Quantitative measures of the tiling patterns and histopathology detected here were scripted in a pipeline written in Perl and Cell Profiler (an open source MatLab plugin) and are directly applicable to RPE sheet images from noninvasive fundus autofluorescence (FAF), adaptive optics confocal scanning laser ophthalmoscope (AO-cSLO), and spectral domain optical coherence tomography (SD-OCT) of patients with early stage AMD or RP.

摘要

背景

C57BL/6J 小鼠的正常 RPE 层可细分为两种主要平铺模式:一种是覆盖大部分表面的规则六边形阵列,另一种是由形状不规则的细胞组成的靠近睫状体的“软网络”。物理模型基于 RPE 细胞的收缩性和弹性以及细胞间的细胞粘附强度来预测这两种模式。

假说

我们假设并确定了 rd10 与 C57BL/6J 小鼠相比 RPE 规则六边形平铺模式的主要变化。

结果

在 rd10 小鼠中,RPE 层损伤广泛,但在大多数视网膜变性完成后,损伤比预期出现得晚。RPE 层变化发生在具有靶心图案的区域。在后区,视神经周围,RPE 细胞呈现出更大的不规则和多样化的形状,以维持完整的单层。在中周边,RPE 细胞具有压缩或卷曲的形态,在视网膜下进展为 RPE 内生长层。周边的细胞保持其形状和大小,直到 RPE 重组的晚期。根据区域和进展情况,相邻细胞的数量差异很大。RPE 形态在光感受器变性后继续恶化。

结论

在 rd10 模型中,RPE 细胞是光感受器变性的旁观者,而对 RPE 的附带损伤早在 30 天时就导致形态发生变化。这里检测到的平铺模式和组织病理学的定量测量是用 Perl 和 Cell Profiler(一个开源 MatLab 插件)编写的脚本编写的,可直接应用于非侵入性眼底自发荧光(FAF)、自适应光学共焦扫描激光检眼镜(AO-cSLO)和早期 AMD 或 RP 患者的光谱域光学相干断层扫描(SD-OCT)的 RPE 层图像。

相似文献

1
Analysis of the RPE sheet in the rd10 retinal degeneration model.
Adv Exp Med Biol. 2012;723:641-7. doi: 10.1007/978-1-4614-0631-0_81.
3
Retinal Pigment Epithelium Remodeling in Mouse Models of Retinitis Pigmentosa.
Int J Mol Sci. 2021 May 20;22(10):5381. doi: 10.3390/ijms22105381.
4
Gene therapy in the rd6 mouse model of retinal degeneration.
Adv Exp Med Biol. 2014;801:711-8. doi: 10.1007/978-1-4614-3209-8_89.
6
Protective effect of sulforaphane against retinal degeneration in the Pde6 mouse model of retinitis pigmentosa.
Curr Eye Res. 2017 Dec;42(12):1684-1688. doi: 10.1080/02713683.2017.1358371. Epub 2017 Sep 22.
8
Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa.
J Comp Neurol. 2010 Jun 1;518(11):2071-89. doi: 10.1002/cne.22322.
9
Structural abnormalities of retinal pigment epithelial cells in a light-inducible, rhodopsin mutant mouse.
J Anat. 2023 Aug;243(2):223-234. doi: 10.1111/joa.13667. Epub 2022 Apr 15.

引用本文的文献

1
High-Resolution Imaging and Interpretation of Three-Dimensional RPE Sheet Structure.
Biomolecules. 2025 Jul 26;15(8):1084. doi: 10.3390/biom15081084.
3
High resolution imaging and interpretation of three-dimensional RPE sheet structure.
bioRxiv. 2025 Jan 28:2024.12.04.626881. doi: 10.1101/2024.12.04.626881.
4
Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy.
Cell Biosci. 2024 May 21;14(1):64. doi: 10.1186/s13578-024-01243-3.
6
Txnip deletions and missense alleles prolong the survival of cones in a retinitis pigmentosa mouse model.
bioRxiv. 2024 Mar 20:2023.08.03.551766. doi: 10.1101/2023.08.03.551766.
7
Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa.
Cell Mol Life Sci. 2023 Nov 18;80(12):362. doi: 10.1007/s00018-023-05021-1.
8
A New Preclinical Model of Retinitis Pigmentosa Due to Deficiency.
Ophthalmol Sci. 2023 May 16;3(4):100332. doi: 10.1016/j.xops.2023.100332. eCollection 2023 Dec.
10
base editing rescues photoreceptors in a mouse model of retinitis pigmentosa.
Mol Ther Nucleic Acids. 2023 Feb 14;31:596-609. doi: 10.1016/j.omtn.2023.02.011. eCollection 2023 Mar 14.

本文引用的文献

2
In vivo imaging of microscopic structures in the rat retina.
Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5872-9. doi: 10.1167/iovs.09-3675. Epub 2009 Jul 2.
3
Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium.
Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3715-29. doi: 10.1167/iovs.07-1430. Epub 2008 Apr 11.
4
In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm.
Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4545-52. doi: 10.1167/iovs.07-1553. Epub 2008 Apr 4.
5
Development and role of tight junctions in the retinal pigment epithelium.
Int Rev Cytol. 2007;258:195-234. doi: 10.1016/S0074-7696(07)58004-6.
6
CellProfiler: free, versatile software for automated biological image analysis.
Biotechniques. 2007 Jan;42(1):71-5. doi: 10.2144/000112257.
7
Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene.
Vision Res. 2007 Mar;47(5):624-33. doi: 10.1016/j.visres.2006.11.020. Epub 2007 Jan 30.
8
Cyclic GMP-phosphodiesterase of rd retina: biosynthesis and content.
Exp Eye Res. 1988 Mar;46(3):363-74. doi: 10.1016/s0014-4835(88)80026-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验