Department of Computer Science, Emory University, Atlanta, GA 30322, USA.
Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
Bioinformatics. 2023 Apr 3;39(4). doi: 10.1093/bioinformatics/btad191.
Morphological analyses with flatmount fluorescent images are essential to retinal pigment epithelial (RPE) aging studies and thus require accurate RPE cell segmentation. Although rapid technology advances in deep learning semantic segmentation have achieved great success in many biomedical research, the performance of these supervised learning methods for RPE cell segmentation is still limited by inadequate training data with high-quality annotations.
To address this problem, we develop a Self-Supervised Semantic Segmentation (S4) method that utilizes a self-supervised learning strategy to train a semantic segmentation network with an encoder-decoder architecture. We employ a reconstruction and a pairwise representation loss to make the encoder extract structural information, while we create a morphology loss to produce the segmentation map. In addition, we develop a novel image augmentation algorithm (AugCut) to produce multiple views for self-supervised learning and enhance the network training performance. To validate the efficacy of our method, we applied our developed S4 method for RPE cell segmentation to a large set of flatmount fluorescent microscopy images, we compare our developed method for RPE cell segmentation with other state-of-the-art deep learning approaches. Compared with other state-of-the-art deep learning approaches, our method demonstrates better performance in both qualitative and quantitative evaluations, suggesting its promising potential to support large-scale cell morphological analyses in RPE aging investigations.
The codes and the documentation are available at: https://github.com/jkonglab/S4_RPE.
视网膜色素上皮 (RPE) 衰老研究中需要使用平场荧光图像进行形态分析,因此需要准确的 RPE 细胞分割。尽管深度学习语义分割技术的快速发展在许多生物医学研究中取得了巨大成功,但这些监督学习方法在 RPE 细胞分割方面的性能仍然受到高质量标注训练数据不足的限制。
为了解决这个问题,我们开发了一种自监督语义分割 (S4) 方法,该方法利用自监督学习策略,使用具有编解码器架构的语义分割网络进行训练。我们采用重建和成对表示损失来使编码器提取结构信息,同时创建形态学损失来生成分割图。此外,我们开发了一种新颖的图像增强算法 (AugCut),用于自监督学习以生成多个视图,并增强网络训练性能。为了验证我们方法的有效性,我们将我们开发的 S4 方法应用于一组大型平场荧光显微镜图像进行 RPE 细胞分割,并将我们开发的 RPE 细胞分割方法与其他最先进的深度学习方法进行比较。与其他最先进的深度学习方法相比,我们的方法在定性和定量评估中均表现出更好的性能,表明其在支持 RPE 衰老研究中的大规模细胞形态分析方面具有很大的潜力。
代码和文档可在以下网址获得:https://github.com/jkonglab/S4_RPE。