Suppr超能文献

蛋白质和配体中质子化状态的分配:将pKa预测与氢键网络优化相结合。

Assignment of protonation states in proteins and ligands: combining pKa prediction with hydrogen bonding network optimization.

作者信息

Krieger Elmar, Dunbrack Roland L, Hooft Rob W W, Krieger Barbara

机构信息

Center for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.

出版信息

Methods Mol Biol. 2012;819:405-21. doi: 10.1007/978-1-61779-465-0_25.

Abstract

Among the many applications of molecular modeling, drug design is probably the one with the highest demands on the accuracy of the underlying structures. During lead optimization, the position of every atom in the binding site should ideally be known with high precision to identify those chemical modifications that are most likely to increase drug affinity. Unfortunately, X-ray crystallography at common resolution yields an electron density map that is too coarse, since the chemical elements and their protonation states cannot be fully resolved.This chapter describes the steps required to fill in the missing knowledge, by devising an algorithm that can detect and resolve the ambiguities. First, the pK (a) values of acidic and basic groups are predicted. Second, their potential protonation states are determined, including all permutations (considering for example protons that can jump between the oxygens of a phosphate group). Third, those groups of atoms are identified that can adopt alternative but indistinguishable conformations with essentially the same electron density. Fourth, potential hydrogen bond donors and acceptors are located. Finally, all these data are combined in a single "configuration energy function," whose global minimum is found with the SCWRL algorithm, which employs dead-end elimination and graph theory. As a result, one obtains a complete model of the protein and its bound ligand, with ambiguous groups rotated to the best orientation and with protonation states assigned considering the current pH and the H-bonding network. An implementation of the algorithm has been available since 2008 as part of the YASARA modeling & simulation program.

摘要

在分子建模的众多应用中,药物设计可能是对基础结构准确性要求最高的领域之一。在先导化合物优化过程中,理想情况下,结合位点中每个原子的位置都应高精度地确定,以便识别那些最有可能提高药物亲和力的化学修饰。不幸的是,常规分辨率的X射线晶体学产生的电子密度图过于粗糙,因为化学元素及其质子化状态无法完全分辨。本章描述了通过设计一种能够检测和解决模糊性的算法来填补缺失知识所需的步骤。首先,预测酸性和碱性基团的pK(a)值。其次,确定它们可能的质子化状态,包括所有排列情况(例如考虑可在磷酸基团的氧原子之间跳跃的质子)。第三,识别那些可以采用具有基本相同电子密度的替代但难以区分的构象的原子组。第四,定位潜在的氢键供体和受体。最后,将所有这些数据组合成一个单一的“构型能量函数”,通过采用死端消除和图论的SCWRL算法找到其全局最小值。结果,得到了蛋白质及其结合配体的完整模型,其中模糊基团旋转到最佳方向,并根据当前pH值和氢键网络分配了质子化状态。自2008年以来,该算法的一个实现版本作为YASARA建模与模拟程序的一部分可用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验