Insani Nabela Audryna Amalia, Sasongko Nurwarrohman Andre, Hildayani Suci Zulaikha, Hudiyanti Dwi, Anam Khairul, Sethio Daniel, Prasasty Vivitri Dewi, Siahaan Parsaoran
Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia.
Department of Chemistry, Pukyong National University, Busan, South Korea.
J Mol Model. 2025 Aug 6;31(9):232. doi: 10.1007/s00894-025-06458-w.
CONTEXT: The molecular understanding of the interaction between carboxymethyl chitosan (CMCs) with the encapsulated drug (vitamin C and curcumin) has not been clearly understood yet. This study seeks to ascertain how the polymer length affects the molecular weight of CMCs as a matrix by using molecular dynamics and molecular docking. We have used pentamer (N-CMCs-5), decamer (N-CMCs-10), and pentadecamer(N-CMCs-15). Molecular docking and dynamic simulations showcase diverse interaction strengths, revealing medium-to-weak hydrogen bonds and hydrophobic interactions within the N-CMCs…vitamin C and N-CMCs…curcumin complexes. Notably, N-CMCs-5…vitamin C (- 17.23 kJ/mol) and N-CMCs-10…curcumin (- 19.74 kJ/mol) exhibit the most robust interactions. RMSD analysis underscores the superior stability of N-CMCs-5…vitamin C (6.70 ± 1.68) and N-CMCs-5…curcumin (8.62 ± 2.47), particularly in comparison to other complexes. Stability in the solid phase relies on medium hydrogen bonds, while solution-phase stability hinges on hydrophobic interactions. Intriguingly, distance analysis highlights the exceptional stability of N-CMCs-5…vitamin C and N-CMCs-15…curcumin, maintaining distances below 3.2 Å during a 100 ns simulation, indicating robust complex stability. The binding constant of N-CMCs-5…vitamin C and N-CMCs-15…curcumin respectively 0.96 mM and 0.39 mM. The findings emphasize the influential role of longer polymer conformations in regulating drug release. Sequential docking studies revealed that curcumin has the capacity to stabilize the complexes, whereas vitamin C tends to destabilize them. METHODS: The molecular docking method was carried out in grid boxes measuring 10 × 10 × 10 Å using the YASARA software. Docking was performed at a temperature of 298.15 K using the VINA algorithm. Molecular docking generates conformation of the receptor-ligand complex, binding site between ligand and receptor, and the energy of complex interactions. Molecular dynamics simulations have been simulated using the same software but utilizing the AMBER14 force field for 100 ns at 298.15 K through many steps of solvation, neutralization, minimization, equilibrium, production, and trajectory analysis. Molecular dynamics are simulated by solvating in a 10 × 10 × 10 Å periodic boundary box. The solvation procedure employs a TIP3P (Transferable Intermolecular Potential 3-Point) water solvent system with a pH of 7.4 and a density of 0.997 g/L.
背景:羧甲基壳聚糖(CMCs)与包封药物(维生素C和姜黄素)之间相互作用的分子机制尚未完全明晰。本研究旨在通过分子动力学和分子对接确定聚合物长度如何影响作为基质的CMCs的分子量。我们使用了五聚体(N-CMCs-5)、十聚体(N-CMCs-10)和十五聚体(N-CMCs-15)。分子对接和动力学模拟展示了不同的相互作用强度,揭示了N-CMCs…维生素C和N-CMCs…姜黄素复合物中存在中等至弱的氢键和疏水相互作用。值得注意的是,N-CMCs-5…维生素C(-17.23 kJ/mol)和N-CMCs-10…姜黄素(-19.74 kJ/mol)表现出最强的相互作用。均方根偏差(RMSD)分析强调了N-CMCs-5…维生素C(6.70±1.68)和N-CMCs-5…姜黄素(8.62±2.47)的卓越稳定性,特别是与其他复合物相比。固相稳定性依赖于中等强度的氢键,而溶液相稳定性则取决于疏水相互作用。有趣的是,距离分析突出了N-CMCs-5…维生素C和N-CMCs-15…姜黄素的非凡稳定性,在100 ns模拟过程中保持距离低于3.2 Å,表明复合物稳定性很强。N-CMCs-5…维生素C和N-CMCs-15…姜黄素的结合常数分别为0.96 mM和0.39 mM。研究结果强调了较长聚合物构象在调节药物释放中的重要作用。序列对接研究表明,姜黄素能够稳定复合物,而维生素C则倾向于使其不稳定。 方法:使用YASARA软件在尺寸为10×10×10 Å的网格框中进行分子对接方法。使用VINA算法在298.15 K的温度下进行对接。分子对接生成受体-配体复合物的构象、配体与受体之间的结合位点以及复合物相互作用的能量。使用相同软件进行分子动力学模拟,但在298.15 K下通过溶剂化、中和、最小化、平衡、生产和轨迹分析等多个步骤,利用AMBER14力场进行100 ns的模拟。分子动力学在一个10×10×10 Å的周期性边界框中进行溶剂化模拟。溶剂化过程采用pH为7.4、密度为0.997 g/L的TIP3P(可转移分子间势3点)水溶剂系统。
Psychopharmacol Bull. 2024-7-8
Arch Ital Urol Androl. 2025-6-30
Carbohydr Polym. 2024-1-15
J Control Release. 2023-2
J Chem Phys. 2021-12-21
Nat Rev Drug Discov. 2021-2