Technical University of Denmark, DTU Physics, 2800, Kongens Lyngby, Denmark.
Dalton Trans. 2012 Feb 28;41(8):2247-56. doi: 10.1039/c1dt11785h. Epub 2011 Dec 19.
Detailed electronic structures of Zn(II) and Cu(II) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(II) intermediates affect Zn-binding to MT and cooperatively lead to Cu(I)MT. The inferred accuracy is ∼0.02-0.03 Å for metal-thiolate bond lengths for the models that are the most realistic MT models so far studied by DFT. We find terminal Zn-S and Cu-S bond lengths of 2.35-2.38 Å and 2.30-2.34 Å, whereas bridging M-S bonds are 0.05-0.11 Å longer. This electronic effect is also reflected in changes in electron density on bridging sulfurs. Various imposed backbone constraints quantify the sensitivity of cluster electronic structure towards protein conformational changes. The large negative charge densities of the clusters are central to MT function, and the smaller β-clusters are more prone to modification. Oxidative stress-associated Cu(II) binding weakens the Zn-S bonds and is thus likely to impair the Zn(II) transfer function of MTs, providing a mechanism for cooperative Cu(II) binding leading to loss of Zn(II) and dysfunctional Cu(I)MT clusters.
采用密度泛函理论(DFT)获得了来自金属硫蛋白(MT)的 Zn(II) 和 Cu(II) 簇的详细电子结构,以研究氧化应激引起的 Cu(II) 中间体如何影响 MT 与 Zn 的结合,并协同导致 Cu(I)MT。对于迄今为止通过 DFT 研究的最逼真的 MT 模型,推断的准确性约为 0.02-0.03Å,用于金属-硫醇键的长度。我们发现末端 Zn-S 和 Cu-S 键长分别为 2.35-2.38Å 和 2.30-2.34Å,而桥接 M-S 键长长 0.05-0.11Å。这种电子效应也反映在桥接硫上的电子密度变化中。各种强制的骨架约束量化了簇电子结构对蛋白质构象变化的敏感性。簇的大负电荷密度是 MT 功能的核心,β-簇较小,更容易发生修饰。与氧化应激相关的 Cu(II)结合会削弱 Zn-S 键,因此可能会损害 MT 的 Zn(II)转移功能,为协同 Cu(II)结合导致 Zn(II)丢失和功能失调的 Cu(I)MT 簇提供了一种机制。