Max Planck Institute (MPI) for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377, Munich, Germany.
J Mol Model. 2019 Aug 9;25(9):258. doi: 10.1007/s00894-019-4139-8.
The impact of a variety of modern computational methods on the structure of biologically relevant zinc complexes is studied. Different density functionals and a Hartree-Fock-based method, scalar-relativistic effects, and basis set integration grid choices, among others, are assessed for set of high-resolution crystallographic structures. While a previous study recommends incorporating relativistic effects into density functional theory calculations in order to improve the accuracy of obtained geometries for small Zn(II) coordination compounds, we show that, for the set in study, relativistic effects do not affect the geometries to a significant extent. The PBEh-3c composite method emerges as good alternative for the treatment of Zn(II) complexes, while the HF-3c method can be employed when computational efficiency is important. Graphical Abstract Which methods are best suited for the computation of Zn(II) bioligand complexes?
研究了各种现代计算方法对生物相关锌配合物结构的影响。评估了一系列高分辨率晶体结构的不同密度泛函和基于 Hartree-Fock 的方法、标量相对论效应以及基组积分网格选择等因素。虽然之前的一项研究建议在密度泛函理论计算中纳入相对论效应,以提高获得的小 Zn(II)配位化合物几何形状的准确性,但我们表明,对于所研究的体系,相对论效应不会对几何形状产生显著影响。PBEh-3c 复合方法是处理 Zn(II)配合物的良好选择,而当计算效率很重要时,可以使用 HF-3c 方法。