Suppr超能文献

使用开源生物信息学工具剖析转录组数据。

The use of open source bioinformatics tools to dissect transcriptomic data.

作者信息

Nitsche Benjamin M, Ram Arthur F J, Meyer Vera

机构信息

Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.

出版信息

Methods Mol Biol. 2012;835:311-31. doi: 10.1007/978-1-61779-501-5_19.

Abstract

Microarrays are a valuable technology to study fungal physiology on a transcriptomic level. Various microarray platforms are available comprising both single and two channel arrays. Despite different technologies, preprocessing of microarray data generally includes quality control, background correction, normalization, and summarization of probe level data. Subsequently, depending on the experimental design, diverse statistical analysis can be performed, including the identification of differentially expressed genes and the construction of gene coexpression networks.We describe how Bioconductor, a collection of open source and open development packages for the statistical programming language R, can be used for dissecting microarray data. We provide fundamental details that facilitate the process of getting started with R and Bioconductor. Using two publicly available microarray datasets from Aspergillus niger, we give detailed protocols on how to identify differentially expressed genes and how to construct gene coexpression networks.

摘要

微阵列是一种在转录组水平上研究真菌生理学的重要技术。有多种微阵列平台可供使用,包括单通道和双通道阵列。尽管技术不同,但微阵列数据的预处理通常包括质量控制、背景校正、标准化以及探针水平数据的汇总。随后,根据实验设计,可以进行各种统计分析,包括差异表达基因的鉴定和基因共表达网络的构建。我们描述了如何使用Bioconductor(一套用于统计编程语言R的开源和开放开发包)来剖析微阵列数据。我们提供了有助于开始使用R和Bioconductor的基本细节。使用来自黑曲霉的两个公开可用的微阵列数据集,我们给出了关于如何鉴定差异表达基因以及如何构建基因共表达网络的详细方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验