Suppr超能文献

毒理基因组学中的转录组学,第一部分:实验设计、技术、公开可用数据及监管方面

Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects.

作者信息

Kinaret Pia Anneli Sofia, Serra Angela, Federico Antonio, Kohonen Pekka, Nymark Penny, Liampa Irene, Ha My Kieu, Choi Jang-Sik, Jagiello Karolina, Sanabria Natasha, Melagraki Georgia, Cattelani Luca, Fratello Michele, Sarimveis Haralambos, Afantitis Antreas, Yoon Tae-Hyun, Gulumian Mary, Grafström Roland, Puzyn Tomasz, Greco Dario

机构信息

Faculty of Medicine and Health Technology, Tampere University, 33200 Tampere, Finland.

BioMediTech Institute, Tampere University, 33200 Tampere, Finland.

出版信息

Nanomaterials (Basel). 2020 Apr 15;10(4):750. doi: 10.3390/nano10040750.

Abstract

The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms' responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series.

摘要

成功进行危害评估的起点是生成无偏差且可靠的数据。传统毒性测试涉及对体内表型终点的广泛观察以及体外模型的补充。新型材料和化合物的不断发展决定了需要更好地理解暴露生物系统中发生的分子变化。转录组学能够通过更详细地观察分子改变来探索生物体对环境、化学和物理因素的反应。毒理基因组学将经典毒理学与组学分析相结合,从而能够表征化合物、新型小分子和工程纳米材料(ENM)的作用机制(MOA)。目前,数据生成和分析缺乏标准化阻碍了在风险评估中充分利用基于毒理基因组学的证据。为了填补这一空白,TGx方法需要考虑适当的实验设计、转录组分析中可能存在的陷阱以及遵循FAIR(可查找、可访问、可互操作和可重用)原则的数据生成和共享。在本综述中,我们总结了DNA微阵列、RNA测序(RNA-Seq)和单细胞RNA测序(scRNA-Seq)数据设计和分析方面的最新进展。我们提供了关于暴露时间、剂量和复杂终点选择、样本质量考量和样本随机化的指导方针。此外,我们总结了公开可用的数据资源,并强调了TGx数据在理解和预测化学毒性潜力方面的应用。此外,我们讨论了将TGx应用于监管决策的努力,以推广风险评估的替代方法并支持3R(减少、优化和替代)概念。本综述是毒理基因组学中转录组学三篇系列文章的第一篇。这些关于实验设计、技术、公开可用数据、监管方面的初步考量,是本综述系列第二和第三部分中进一步严格且可靠的数据预处理和建模的起点。

相似文献

5
Nextcast: A software suite to analyse and model toxicogenomics data.Nextcast:一个用于分析和建模毒理基因组学数据的软件套件。
Comput Struct Biotechnol J. 2022 Mar 18;20:1413-1426. doi: 10.1016/j.csbj.2022.03.014. eCollection 2022.

引用本文的文献

4
Machine learning to dissect perturbations in complex cellular systems.利用机器学习剖析复杂细胞系统中的扰动。
Comput Struct Biotechnol J. 2025 Feb 26;27:832-842. doi: 10.1016/j.csbj.2025.02.028. eCollection 2025.
8
Imaging biofilms using fluorescence hybridization: seeing is believing.利用荧光杂交技术对生物膜进行成像:眼见为实。
Front Cell Infect Microbiol. 2023 May 22;13:1195803. doi: 10.3389/fcimb.2023.1195803. eCollection 2023.
9
An ancestral molecular response to nanomaterial particulates.纳米颗粒的祖先分子反应。
Nat Nanotechnol. 2023 Aug;18(8):957-966. doi: 10.1038/s41565-023-01393-4. Epub 2023 May 8.

本文引用的文献

2
An Overview of Machine Learning and Big Data for Drug Toxicity Evaluation.用于药物毒性评估的机器学习与大数据概述
Chem Res Toxicol. 2020 Jan 21;33(1):20-37. doi: 10.1021/acs.chemrestox.9b00227. Epub 2019 Nov 22.
8
eUTOPIA: solUTion for Omics data PreprocessIng and Analysis.eUTOPIA:组学数据预处理与分析的解决方案。
Source Code Biol Med. 2019 Jan 29;14:1. doi: 10.1186/s13029-019-0071-7. eCollection 2019.
10
Toxicogenomics: A 2020 Vision.毒理基因组学:2020 年展望。
Trends Pharmacol Sci. 2019 Feb;40(2):92-103. doi: 10.1016/j.tips.2018.12.001. Epub 2018 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验