Fiedler Markus Rm, Lorenz Annett, Nitsche Benjamin M, van den Hondel Cees Amjj, Ram Arthur Fj, Meyer Vera
Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany.
Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands.
Fungal Biol Biotechnol. 2014 Dec 1;1:5. doi: 10.1186/s40694-014-0005-8. eCollection 2014.
Cell wall integrity, vesicle transport and protein secretion are key factors contributing to the vitality and productivity of filamentous fungal cell factories such as . In order to pioneer rational strain improvement programs, fundamental knowledge on the genetic basis of these processes is required. The aim of the present study was thus to unravel survival strategies of when challenged with compounds interfering directly or indirectly with its cell wall integrity: calcofluor white, caspofungin, aureobasidin A, FK506 and fenpropimorph.
Transcriptomics signatures of and phenotypic analyses of selected null mutant strains were used to predict regulator proteins mediating the survival responses against these stressors. This integrated approach allowed us to reconstruct a model for the cell wall salvage gene network of that ensures survival of the fungus upon cell surface stress. The model predicts that (i) caspofungin and aureobasidin A induce the cell wall integrity pathway as a main compensatory response via induction of RhoB and RhoD, respectively, eventually activating the mitogen-activated protein kinase kinase MkkA and the transcription factor RlmA. (ii) RlmA is the main transcription factor required for the protection against calcofluor white but it cooperates with MsnA and CrzA to ensure survival of when challenged with caspofungin and aureobasidin A. (iii) Membrane stress provoked by aureobasidin A via disturbance of sphingolipid synthesis induces cell wall stress, whereas fenpropimorph-induced disturbance of ergosterol synthesis does not.
The present work uncovered a sophisticated defence system of which employs at least three transcription factors - RlmA, MsnA and CrzA - to protect itself against cell wall stress. The transcriptomic data furthermore predicts a fourth transfactor, SrbA, which seems to be specifically important to survive fenpropimorph-induced cell membrane stress. Future studies will disclose how these regulators are interlocked in different signaling pathways to secure survival of under different cell wall stress conditions.
细胞壁完整性、囊泡运输和蛋白质分泌是影响丝状真菌细胞工厂(如……)活力和生产力的关键因素。为了开创合理的菌株改良计划,需要有关这些过程遗传基础的基础知识。因此,本研究的目的是揭示……在受到直接或间接干扰其细胞壁完整性的化合物(如荧光增白剂、卡泊芬净、金担子素A、FK506和粉唑醇)挑战时的生存策略。
利用……的转录组学特征和选定的缺失突变体菌株的表型分析来预测介导针对这些应激源的生存反应的调节蛋白。这种综合方法使我们能够重建……的细胞壁挽救基因网络模型,该模型可确保真菌在细胞表面应激时存活。该模型预测:(i)卡泊芬净和金担子素A分别通过诱导RhoB和RhoD,作为主要的补偿反应诱导细胞壁完整性途径,最终激活丝裂原活化蛋白激酶激酶MkkA和转录因子RlmA。(ii)RlmA是抵御荧光增白剂所需的主要转录因子,但它与MsnA和CrzA协同作用,以确保……在受到卡泊芬净和金担子素A挑战时存活。(iii)金担子素A通过干扰鞘脂合成引起的膜应激诱导细胞壁应激,而粉唑醇诱导的麦角固醇合成干扰则不会。
本研究揭示了……的一个复杂防御系统,该系统至少利用三种转录因子——RlmA、MsnA和CrzA——来保护自身免受细胞壁应激。转录组学数据还预测了第四个转录因子SrbA,它似乎对在粉唑醇诱导的细胞膜应激下存活特别重要。未来的研究将揭示这些调节因子如何在不同的信号通路中相互关联,以确保……在不同的细胞壁应激条件下存活。