Suppr超能文献

VITAL NMR:使用化学位移衍生的二级结构信息对有限数量的氨基酸进行评估,以确定同源模型的准确性。

VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

J Biomol NMR. 2012 Jan;52(1):41-56. doi: 10.1007/s10858-011-9576-3. Epub 2011 Nov 3.

Abstract

Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

摘要

同源建模是一种预测蛋白质结构的强大工具,其成功取决于在给定的结构模板和正在分析的蛋白质序列之间获得合理的对齐。为了利用具有较少结构模板的蛋白质的更大预测能力,我们开发了一种基于与实验固态 NMR(SSNMR)数据得出的二级结构相符程度对同源模型进行排序的方法。通过简单的 SSNMR 实验(例如,(13)C-(13)C 2D 相关光谱)可以快速获得此类数据。为了测试我们的同源模型评分程序对各种氨基酸标记方案的适用性,我们从 TALOS+/SPARTA+蛋白质结构训练集中挑选了 22 个蛋白质靶标,生成了 7474 个同源模型库。使用 SSNMR 可能合理分配的氨基酸子集,我们发现残基 Val、Ile、Thr、Ala 和 Leu(VITAL)对模拟了一个理想数据集,其中所有残基都被特异性分配。使用预测的 VITAL 特异性数据集对模型进行评分,并使用化学位移指数计算二级结构,得到的 Pearson 相关系数(-0.75)与对照(-0.77)相当,其中使用 STRIDE 对所有氨基酸(ALL 20)进行了特异性二级结构评分。该方法有望通过 SSNMR 加速未知折叠蛋白质的结构获取,通过指导选择远程同源蛋白质模板和评估模型质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验