Suppr超能文献

SimShiftDB;基于在大型合成数据库上进行化学位移相似性搜索得出的局部构象限制条件。

SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database.

作者信息

Ginzinger Simon W, Coles Murray

机构信息

Department of Molecular Biology, Division of Bioinformatics, Center of Applied Molecular Engineering, University of Salzburg, Hellbrunnerstr. 34/3.OG, 5020, Salzburg, Austria.

出版信息

J Biomol NMR. 2009 Mar;43(3):179-85. doi: 10.1007/s10858-009-9301-7. Epub 2009 Feb 18.

Abstract

We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods.

摘要

我们展示了SimShiftDB,这是一个利用结构比对从蛋白质化学位移中提取构象数据的新程序。比对是在搜索一个包含13000个结构及相应反向计算化学位移的大型数据库时获得的。即使在序列相似性较低的情况下,SimShiftDB利用化学位移数据也能提供准确结果,并且能均匀覆盖构象搜索空间。我们将SimShiftDB与最先进的基于序列的搜索工具HHSearch以及该任务的当前标准工具TALOS进行了比较。我们表明,对于很大一部分预测的相似性,SimShiftDB优于其他两种方法。特别是,更大数据库提供的高覆盖率常常使得能够对不参与典型二级结构的残基进行预测,而在这些地方TALOS的预测频率较低且更容易出错。因此,SimShiftDB可被视为现有方法的补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f38/2847166/85e45dfe1a03/10858_2009_9301_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验