Suppr超能文献

SPARTA+:通过人工神经网络对经验核磁共振化学位移预测的适度改进。

SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.

出版信息

J Biomol NMR. 2010 Sep;48(1):13-22. doi: 10.1007/s10858-010-9433-9. Epub 2010 Jul 14.

Abstract

NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and (13)C(beta) chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and (13)C(beta) atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for delta(15)N, delta(13)C', delta(13)C(alpha), delta(13)C(beta), delta(1)H(alpha) and delta(1)H(N), respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

摘要

NMR 化学位移为蛋白质提供了重要的局部结构信息,是最近描述的蛋白质结构生成方案中的关键。我们描述了一种新的化学位移预测程序 SPARTA+,它基于人工神经网络。该神经网络是在一个经过精心修剪的大型数据库上进行训练的,该数据库包含 580 种具有高分辨率 X 射线结构和几乎完整的骨架和(13)C(β)化学位移的蛋白质。该神经网络经过训练,可以建立化学位移与蛋白质结构之间的定量关系,包括骨架和侧链构象、氢键、电场和环电流效应。经过训练的神经网络可以快速预测骨架和(13)C(β)原子的化学位移,对于一组 11 个验证蛋白质,对于 delta(15)N、delta(13)C'、delta(13)C(alpha)、delta(13)C(beta)、delta(1)H(alpha)和 delta(1)H(N),SPARTA+预测的化学位移与实验值之间的标准偏差分别为 2.45、1.09、0.94、1.14、0.25 和 0.49 ppm,与迄今为止可用的最佳程序相比,这代表了适度但一致的改进(2-10%),并且似乎接近经验方法可以预测化学位移的极限。

相似文献

4
SHIFTX2: significantly improved protein chemical shift prediction.SHIFTX2:显著提高了蛋白质化学位移预测能力。
J Biomol NMR. 2011 May;50(1):43-57. doi: 10.1007/s10858-011-9478-4. Epub 2011 Mar 30.

引用本文的文献

本文引用的文献

9
Consistent blind protein structure generation from NMR chemical shift data.基于核磁共振化学位移数据的一致盲态蛋白质结构生成。
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4685-90. doi: 10.1073/pnas.0800256105. Epub 2008 Mar 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验