Suppr超能文献

骨髓增生异常综合征中的免疫失调。

Immune dysregulation in myelodysplastic syndrome.

作者信息

Sugimori Chiharu, List Alan F, Epling-Burnette Pearlie K

机构信息

Immunology Program and Malignant Hematology Division, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

出版信息

Hematol Rep. 2010 Jan 26;2(1):e1. doi: 10.4081/hr.2010.e1.

Abstract

Myelodysplastic syndrome (MDS) represents one of the most challenging health-related problems in the elderly. Characterized by dysplastic morphology in the bone marrow in association with ineffective hematopoiesis, pathophysiological causes of this disease are diverse including genetic abnormalities within myeloid progenitors, altered epigenetics, and changes in the bone marrow microenvironment. The concept that T-cell mediated autoimmunity contributes to bone marrow failure has been widely accepted due to hematologic improvement after immunosuppressive therapy (IST) in a subset of patients. Currently, IST for MDS primarily involves anti-thymocyte globulin (ATG)-based regimens in which responsiveness is strongly associated with younger (under 60 years) age at disease onset. In such cases, progressive cytopenia may occur as a consequence of expanded self-reactive CD8(+) cytotoxic T lymphocytes (CTLs) that suppress hematopoietic progenitors. Although most hematologists agree that IST can offer durable hematologic remission in younger patients with MDS, an international clinical study and a better understanding of the molecular mechanisms contributing to the expansion of self-reactive CTLs is crucial. In this review, data accumulated in the US, Europe, and Asia will be summarized to provide insight and direction for a multi-center international trial.

摘要

骨髓增生异常综合征(MDS)是老年人面临的最具挑战性的健康相关问题之一。其特征为骨髓发育异常形态伴无效造血,该疾病的病理生理原因多种多样,包括髓系祖细胞内的基因异常、表观遗传学改变以及骨髓微环境变化。由于一部分患者在接受免疫抑制治疗(IST)后血液学得到改善,T细胞介导的自身免疫导致骨髓衰竭这一概念已被广泛接受。目前,MDS的IST主要涉及以抗胸腺细胞球蛋白(ATG)为基础的方案,其中反应性与疾病发病时较年轻(60岁以下)的年龄密切相关。在这种情况下,进行性血细胞减少可能是由于抑制造血祖细胞的自身反应性CD8(+)细胞毒性T淋巴细胞(CTL)扩增所致。尽管大多数血液学家都认为IST可以使年轻的MDS患者获得持久的血液学缓解,但一项国际临床研究以及对导致自身反应性CTL扩增的分子机制有更好的理解至关重要。在这篇综述中,将总结在美国、欧洲和亚洲积累的数据,为多中心国际试验提供见解和方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3222262/8f652d679c0f/hr-2010-1-e1-g001.jpg

相似文献

1
Immune dysregulation in myelodysplastic syndrome.
Hematol Rep. 2010 Jan 26;2(1):e1. doi: 10.4081/hr.2010.e1.
2
An association between hypoplastic myelodysplastic syndrome and T-prolymphocytic leukaemia.
J Lab Physicians. 2011 Jan;3(1):49-51. doi: 10.4103/0974-2727.78568.
3
4
Special Education: Aplastic Anemia.
Oncologist. 1996;1(3):187-189.
5
Immunosuppressive Therapy: Exploring an Underutilized Treatment Option for Myelodysplastic Syndrome.
Clin Lymphoma Myeloma Leuk. 2016 Aug;16 Suppl:S44-8. doi: 10.1016/j.clml.2016.02.017.
6
Immunologic aspects of hypoplastic myelodysplastic syndrome.
Semin Oncol. 2011 Oct;38(5):667-72. doi: 10.1053/j.seminoncol.2011.04.006.
7
Emerging immunosuppressive drugs in myelodysplastic syndromes.
Expert Opin Emerg Drugs. 2012 Dec;17(4):519-41. doi: 10.1517/14728214.2012.736487. Epub 2012 Nov 20.
8
Targeting immune dysregulation in myelodysplastic syndromes.
JAMA. 2011 Feb 23;305(8):814-9. doi: 10.1001/jama.2011.194.
9
[Myelodysplastic syndromes (MDS). Aspects of hematopathologic diagnosis].
Pathologe. 2000 Jan;21(1):1-15. doi: 10.1007/s002920050001.
10
Immune-induced cytopenia: bone marrow failure syndrome.
Curr Hematol Rep. 2004 May;3(3):178-83.

引用本文的文献

1
Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes.
Cancers (Basel). 2022 Nov 17;14(22):5656. doi: 10.3390/cancers14225656.
2
Comparative study of IgG binding to megakaryocytes in immune and myelodysplastic thrombocytopenic patients.
Ann Hematol. 2021 Jul;100(7):1701-1709. doi: 10.1007/s00277-021-04556-2. Epub 2021 May 13.
3
High mutation burden in the checkpoint and micro-RNA processing genes in myelodysplastic syndrome.
PLoS One. 2021 Mar 17;16(3):e0248430. doi: 10.1371/journal.pone.0248430. eCollection 2021.
4
Frequent mutations in CD8 T cells from patients with pure red cell aplasia.
Blood Adv. 2018 Oct 23;2(20):2704-2712. doi: 10.1182/bloodadvances.2018022723.
5
CD8 T cells drive autoimmune hematopoietic stem cell dysfunction and bone marrow failure.
J Autoimmun. 2016 Dec;75:58-67. doi: 10.1016/j.jaut.2016.07.007. Epub 2016 Jul 21.
6
Peripheral blood mononuclear cell proteome changes in patients with myelodysplastic syndrome.
Biomed Res Int. 2015;2015:872983. doi: 10.1155/2015/872983. Epub 2015 Apr 16.
8
Immunomodulatory treatment of myelodysplastic syndromes: antithymocyte globulin, cyclosporine, and alemtuzumab.
Semin Hematol. 2012 Oct;49(4):304-11. doi: 10.1053/j.seminhematol.2012.07.004.

本文引用的文献

2
IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome.
Br J Haematol. 2009 Apr;145(1):64-72. doi: 10.1111/j.1365-2141.2009.07593.x. Epub 2009 Feb 3.
5
Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy.
J Clin Oncol. 2008 May 20;26(15):2505-11. doi: 10.1200/JCO.2007.11.9214. Epub 2008 Apr 14.
6
The role of the immune system in myelodysplasia: implications for therapy.
Semin Hematol. 2008 Jan;45(1):39-48. doi: 10.1053/j.seminhematol.2007.11.006.
7
Myelodysplastic syndromes, aging, and age: correlations, common mechanisms, and clinical implications.
Leuk Lymphoma. 2007 Oct;48(10):1900-9. doi: 10.1080/10428190701534382.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验