Suppr超能文献

发育控制基因中的祖先和保守的顺式调控结构。

Ancestral and conserved cis-regulatory architectures in developmental control genes.

机构信息

Division of Biological Sciences/CDB, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

Dev Biol. 2012 Feb 15;362(2):282-94. doi: 10.1016/j.ydbio.2011.12.011. Epub 2011 Dec 13.

Abstract

Among developmental control genes, transcription factor-target gene "linkages"--the direct connections between target genes and the factors that control their patterns of expression--can show remarkable evolutionary stability. However, the specific binding sites that mediate and define these regulatory connections are themselves often subject to rapid turnover. Here we describe several instances in which particular transcription factor binding motif combinations have evidently been conserved upstream of orthologous target genes for extraordinarily long evolutionary periods. This occurs against a backdrop in which other binding sites for the same factors are coming and going rapidly. Our examples include a particular Dpp Silencer Element upstream of insect brinker genes, in combination with a novel motif we refer to as the Downstream Element; combinations of a Suppressor of Hairless Paired Site (SPS) and a specific proneural protein binding site associated with arthropod Notch pathway target genes; and a three-motif combination, also including an SPS, upstream of deuterostome Hes repressor genes, which are also Notch targets. We propose that these stable motif architectures have been conserved intact from a deep ancestor, in part because they mediate a special mode of regulation that cannot be supplied by the other, unstable motif instances.

摘要

在发育调控基因中,转录因子-靶基因“连接”——靶基因与其控制其表达模式的因子之间的直接联系——可以表现出显著的进化稳定性。然而,介导和定义这些调节连接的特定结合位点本身往往容易快速变化。在这里,我们描述了几个实例,其中特定的转录因子结合基序组合显然在同源靶基因的进化过程中被长期保守。在这种情况下,同一因素的其他结合位点快速出现和消失。我们的例子包括昆虫 brinker 基因上游的特定 Dpp 沉默元件,与我们称为下游元件的新基序结合;与节肢动物 Notch 途径靶基因相关的抑制 Hairless 配对位点 (SPS) 和特定神经前蛋白结合位点的组合;以及包括 SPS 在内的三基序组合,位于后口动物 Hes 抑制基因的上游,这些基因也是 Notch 的靶基因。我们提出,这些稳定的基序结构从一个远古祖先那里完整地保存下来,部分原因是它们介导了一种特殊的调节模式,而这种模式不能由其他不稳定的基序实例提供。

相似文献

1
Ancestral and conserved cis-regulatory architectures in developmental control genes.
Dev Biol. 2012 Feb 15;362(2):282-94. doi: 10.1016/j.ydbio.2011.12.011. Epub 2011 Dec 13.
5
A DNA transcription code for cell-specific gene activation by notch signaling.
Curr Biol. 2005 Jan 26;15(2):94-104. doi: 10.1016/j.cub.2004.12.070.
10
Conservation of the Notch antagonist Hairless in arthropods: functional analysis of the crustacean Daphnia pulex Hairless gene.
Dev Genes Evol. 2017 Sep;227(5):339-353. doi: 10.1007/s00427-017-0593-4. Epub 2017 Aug 31.

引用本文的文献

1
Identification of new Anopheles gambiae transcriptional enhancers using a cross-species prediction approach.
Insect Mol Biol. 2021 Aug;30(4):410-419. doi: 10.1111/imb.12705. Epub 2021 Apr 27.
2
Enhancer grammar in development, evolution, and disease: dependencies and interplay.
Dev Cell. 2021 Mar 8;56(5):575-587. doi: 10.1016/j.devcel.2021.02.016.
3
Automated tools for comparative sequence analysis of genic regions using the GenePalette application.
Dev Biol. 2017 Sep 1;429(1):158-164. doi: 10.1016/j.ydbio.2017.06.033. Epub 2017 Jun 30.
5
Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.
Annu Rev Genomics Hum Genet. 2015;16:103-31. doi: 10.1146/annurev-genom-091212-153423. Epub 2015 May 20.
6
Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.
PLoS Genet. 2015 May 28;11(5):e1005268. doi: 10.1371/journal.pgen.1005268. eCollection 2015 May.
7
Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes.
PLoS Genet. 2014 Jun 26;10(6):e1004435. doi: 10.1371/journal.pgen.1004435. eCollection 2014 Jun.
8
The role of self-organization in developmental evolution.
Theory Biosci. 2014 Dec;133(3-4):145-63. doi: 10.1007/s12064-014-0200-4. Epub 2014 Apr 16.
9
Assessing constraints on the path of regulatory sequence evolution.
Philos Trans R Soc Lond B Biol Sci. 2013 Nov 11;368(1632):20130026. doi: 10.1098/rstb.2013.0026. Print 2013 Dec 19.
10
Manipulating the sensitivity of signal-induced repression: quantification and consequences of altered brinker gradients.
PLoS One. 2013 Aug 8;8(8):e71224. doi: 10.1371/journal.pone.0071224. eCollection 2013.

本文引用的文献

1
Using the Acropora digitifera genome to understand coral responses to environmental change.
Nature. 2011 Jul 24;476(7360):320-3. doi: 10.1038/nature10249.
2
Rapid evolutionary rewiring of a structurally constrained eye enhancer.
Curr Biol. 2011 Jul 26;21(14):1186-96. doi: 10.1016/j.cub.2011.05.056. Epub 2011 Jul 7.
3
Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10036-43. doi: 10.1073/pnas.1105937108. Epub 2011 May 18.
4
The ecoresponsive genome of Daphnia pulex.
Science. 2011 Feb 4;331(6017):555-61. doi: 10.1126/science.1197761.
5
The multiple facets of ubiquitination in the regulation of notch signaling pathway.
Traffic. 2011 Feb;12(2):149-61. doi: 10.1111/j.1600-0854.2010.01126.x. Epub 2010 Oct 29.
6
Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes.
Nat Struct Mol Biol. 2010 Nov;17(11):1312-7. doi: 10.1038/nsmb.1938. Epub 2010 Oct 24.
7
The Amphimedon queenslandica genome and the evolution of animal complexity.
Nature. 2010 Aug 5;466(7307):720-6. doi: 10.1038/nature09201.
9
The genome of the Western clawed frog Xenopus tropicalis.
Science. 2010 Apr 30;328(5978):633-6. doi: 10.1126/science.1183670.
10
Genome sequence of the pea aphid Acyrthosiphon pisum.
PLoS Biol. 2010 Feb 23;8(2):e1000313. doi: 10.1371/journal.pbio.1000313.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验