Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.
Nature. 2011 Jul 24;476(7360):320-3. doi: 10.1038/nature10249.
Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.
尽管珊瑚礁具有巨大的生态和经济重要性,但在其建立过程中起关键作用的硬珊瑚动物,越来越多地面临着一系列人为挑战,包括海洋酸化和海水温度上升。为了更好地了解珊瑚生物学的分子机制,我们使用下一代测序技术对鹿角珊瑚 Acropora digitifera 的大约 4200 万个碱基对的基因组进行了测序。该基因组包含大约 23700 个基因模型。分子系统发育学表明,珊瑚和海葵 Nematostella vectensis 在大约 5 亿年前就已经分化,这比现代珊瑚在化石记录中的出现时间(大约 2.4 亿年前)要早得多。尽管共生关系有着悠久的进化历史,但没有发现从共生体到宿主的基因水平转移的证据。然而,与其他几种珊瑚不同的是,鹿角珊瑚似乎缺乏合成半胱氨酸所必需的酶,这意味着这种珊瑚依赖其共生体来获取这种氨基酸。珊瑚栖息在经常暴露在高强度太阳辐射下的环境中,对鹿角珊瑚基因组数据的分析表明,珊瑚宿主可以独立地从头合成具有防晒作用的强效化合物——菌氨酸类似物。此外,珊瑚先天免疫 repertoire 比海葵复杂得多,这表明其中一些基因可能在共生或群居中发挥作用。我们还鉴定了一些具有钙化作用的候选基因,其中一些基因只存在于珊瑚中。珊瑚基因组为理解共生关系和对环境变化的响应的分子基础提供了一个平台。