Suppr超能文献

α-原肌球蛋白中的家族性肥厚型心肌病突变促进了与细肌丝的横桥相互作用。

Facilitated cross-bridge interactions with thin filaments by familial hypertrophic cardiomyopathy mutations in α-tropomyosin.

作者信息

Wang Fang, Brunet Nicolas M, Grubich Justin R, Bienkiewicz Ewa A, Asbury Thomas M, Compton Lisa A, Mihajlović Goran, Miller Victor F, Chase P Bryant

机构信息

Department of Biological Science, The Florida State University, Tallahassee, FL 32306-4295, USA.

出版信息

J Biomed Biotechnol. 2011;2011:435271. doi: 10.1155/2011/435271. Epub 2011 Dec 1.

Abstract

Familial hypertrophic cardiomyopathy (FHC) is a disease of cardiac sarcomeres. To identify molecular mechanisms underlying FHC pathology, functional and structural differences in three FHC-related mutations in recombinant α-Tm (V95A, D175N, and E180G) were characterized using both conventional and modified in vitro motility assays and circular dichroism spectroscopy. Mutant Tm's exhibited reduced α-helical structure and increased unordered structure. When thin filaments were fully occupied by regulatory proteins, little or no motion was detected at pCa 9, and maximum speed (pCa 5) was similar for all tropomyosins. Ca(2+)-responsiveness of filament sliding speed was increased either by increased pCa(50) (V95A), reduced cooperativity n (D175N), or both (E180G). When temperature was increased, thin filaments with E180G exhibited dysregulation at temperatures ~10°C lower, and much closer to body temperature, than WT. When HMM density was reduced, thin filaments with D175N required fewer motors to initiate sliding or achieve maximum sliding speed.

摘要

家族性肥厚型心肌病(FHC)是一种心肌肌节疾病。为了确定FHC病理背后的分子机制,使用传统和改良的体外运动分析以及圆二色光谱法,对重组α-原肌球蛋白(V95A、D175N和E180G)中三个与FHC相关的突变的功能和结构差异进行了表征。突变型原肌球蛋白表现出α-螺旋结构减少和无序结构增加。当细肌丝被调节蛋白完全占据时,在pCa 9时几乎检测不到运动,并且所有原肌球蛋白的最大速度(pCa 5)相似。细丝滑动速度的钙反应性通过增加pCa(50)(V95A)、降低协同性n(D175N)或两者兼而有之(E180G)而增加。当温度升高时,与野生型相比,含有E180G的细肌丝在低约10°C且更接近体温的温度下表现出调节异常。当HMM密度降低时,含有D175N的细肌丝启动滑动或达到最大滑动速度所需的马达更少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd83/3237018/d626bee0fc89/JBB2011-435271.001.jpg

相似文献

2
Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin.
Biochemistry. 2012 Aug 14;51(32):6413-20. doi: 10.1021/bi3006835. Epub 2012 Aug 1.
5
Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin's HCM mutations.
Biophys J. 2011 Feb 16;100(4):1014-23. doi: 10.1016/j.bpj.2011.01.001.
7
Effect of Cardiomyopathic Mutations in Tropomyosin on Calcium Regulation of the Actin-Myosin Interaction in Skeletal Muscle.
Bull Exp Biol Med. 2016 Nov;162(1):42-44. doi: 10.1007/s10517-016-3540-x. Epub 2016 Nov 23.
8
The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy.
Biochem Biophys Res Commun. 2012 Aug 3;424(3):493-6. doi: 10.1016/j.bbrc.2012.06.141. Epub 2012 Jul 9.
9
Cardiomyopathy-associated mutations in tropomyosin differently affect actin-myosin interaction at single-molecule and ensemble levels.
J Muscle Res Cell Motil. 2019 Dec;40(3-4):299-308. doi: 10.1007/s10974-019-09560-8. Epub 2019 Oct 23.
10
Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium.
J Physiol. 2000 Apr 1;524 Pt 1(Pt 1):233-43. doi: 10.1111/j.1469-7793.2000.00233.x.

引用本文的文献

1
Myosin and tropomyosin-troponin complementarily regulate thermal activation of muscles.
J Gen Physiol. 2023 Dec 4;155(12). doi: 10.1085/jgp.202313414. Epub 2023 Oct 23.
2
Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C.
Int J Mol Sci. 2023 Aug 2;24(15):12349. doi: 10.3390/ijms241512349.
4
Cardiomyopathy-associated mutations in tropomyosin differently affect actin-myosin interaction at single-molecule and ensemble levels.
J Muscle Res Cell Motil. 2019 Dec;40(3-4):299-308. doi: 10.1007/s10974-019-09560-8. Epub 2019 Oct 23.
5
A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics.
Biophys J. 2019 Dec 17;117(12):2255-2272. doi: 10.1016/j.bpj.2019.08.003. Epub 2019 Aug 9.
6
Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1.
J Muscle Res Cell Motil. 2020 Mar;41(1):39-53. doi: 10.1007/s10974-019-09532-y. Epub 2019 Jul 3.
7
Microscopic heat pulses activate cardiac thin filaments.
J Gen Physiol. 2019 Jun 3;151(6):860-869. doi: 10.1085/jgp.201812243. Epub 2019 Apr 22.
8
Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with motility assays.
Biophys Physicobiol. 2019 Feb 2;16:28-40. doi: 10.2142/biophysico.16.0_28. eCollection 2019.
9
Predicting Effects of Tropomyosin Mutations on Cardiac Muscle Contraction through Myofilament Modeling.
Front Physiol. 2016 Oct 26;7:473. doi: 10.3389/fphys.2016.00473. eCollection 2016.
10
Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C.
PLoS One. 2016 Oct 13;11(10):e0164222. doi: 10.1371/journal.pone.0164222. eCollection 2016.

本文引用的文献

2
Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle.
DNA Cell Biol. 2011 Sep;30(9):653-9. doi: 10.1089/dna.2010.1163. Epub 2011 Mar 27.
3
Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin's HCM mutations.
Biophys J. 2011 Feb 16;100(4):1014-23. doi: 10.1016/j.bpj.2011.01.001.
4
6
Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform.
J Physiol. 2006 Dec 15;577(Pt 3):935-44. doi: 10.1113/jphysiol.2006.120105. Epub 2006 Sep 28.
7
The genetic basis for cardiac remodeling.
Annu Rev Genomics Hum Genet. 2005;6:185-216. doi: 10.1146/annurev.genom.6.080604.162132.
8
Biology of the troponin complex in cardiac myocytes.
Prog Cardiovasc Dis. 2004 Nov-Dec;47(3):159-76. doi: 10.1016/j.pcad.2004.07.003.
9
A spatially explicit nanomechanical model of the half-sarcomere: myofilament compliance affects Ca(2+)-activation.
Ann Biomed Eng. 2004 Nov;32(11):1559-68. doi: 10.1114/b:abme.0000049039.89173.08.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验