Suppr超能文献

导致肥厚型心肌病的两个原肌球蛋白突变体 D175N 和 E180G 的柔韧性。

The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy.

机构信息

Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.

出版信息

Biochem Biophys Res Commun. 2012 Aug 3;424(3):493-6. doi: 10.1016/j.bbrc.2012.06.141. Epub 2012 Jul 9.

Abstract

Point mutations targeting muscle thin filament proteins are the cause of a number of cardiomyopathies. In many cases, biological effects of the mutations are well-documented, whereas their structural and mechanical impact on filament assembly and regulatory function is lacking. In order to elucidate molecular defects leading to cardiac dysfunction, we have examined the structural mechanics of two tropomyosin mutants, E180G and D175N, which are associated with hypertrophic cardiomyopathy (HCM). Tropomyosin is an α-helical coiled-coil dimer which polymerizes end-to-end to create an elongated superhelix that wraps around F-actin filaments of muscle and non-muscle cells, thus modulating the binding of other actin-binding proteins. Here, we study how flexibility changes in the E180G and D175N mutants might affect tropomyosin binding and regulatory motion on F-actin. Electron microscopy and Molecular Dynamics simulations show that E180G and D175N mutations cause an increase in bending flexibility of tropomyosin both locally and globally. This excess flexibility is likely to increase accessibility of the myosin-binding sites on F-actin, thus destabilizing the low-Ca(2+) relaxed-state of cardiac muscle. The resulting imbalance in the on-off switching mechanism of the mutants will shift the regulatory equilibrium towards Ca(2+)-activation of cardiac muscle, as is observed in affected muscle, accompanied by enhanced systolic activity, diastolic dysfunction, and cardiac compensations associated with HCM and heart failure.

摘要

针对肌丝蛋白的点突变是多种心肌病的病因。在许多情况下,突变的生物学效应已有详细记录,但它们对纤维组装和调节功能的结构和机械影响仍不清楚。为了阐明导致心脏功能障碍的分子缺陷,我们研究了两种与肥厚型心肌病(HCM)相关的肌球蛋白突变体 E180G 和 D175N 的结构力学。原肌球蛋白是一种α-螺旋卷曲螺旋二聚体,它通过端到端聚合形成一个长的超螺旋,包裹在肌肉和非肌肉细胞的 F-肌动蛋白丝上,从而调节其他肌动蛋白结合蛋白的结合。在这里,我们研究了 E180G 和 D175N 突变如何影响肌球蛋白结合和 F-肌动蛋白上的调节运动。电子显微镜和分子动力学模拟表明,E180G 和 D175N 突变导致肌球蛋白的弯曲灵活性在局部和整体上增加。这种过度的灵活性可能会增加 F-肌动蛋白上肌球蛋白结合位点的可及性,从而使心脏肌肉的低 Ca(2+)松弛状态不稳定。突变体的开-关转换机制的这种不平衡将使调节平衡向心脏肌肉的 Ca(2+)激活方向移动,就像在受影响的肌肉中观察到的那样,伴随着收缩活动增强、舒张功能障碍以及与 HCM 和心力衰竭相关的心脏代偿。

相似文献

1
The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy.
Biochem Biophys Res Commun. 2012 Aug 3;424(3):493-6. doi: 10.1016/j.bbrc.2012.06.141. Epub 2012 Jul 9.
2
Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin.
Biochemistry. 2012 Aug 14;51(32):6413-20. doi: 10.1021/bi3006835. Epub 2012 Aug 1.
3
The effect of the Asp175Asn and Glu180Gly TPM1 mutations on actin-myosin interaction during the ATPase cycle.
Biochim Biophys Acta. 2012 Feb;1824(2):366-73. doi: 10.1016/j.bbapap.2011.11.004. Epub 2011 Dec 3.
5
Effect of Cardiomyopathic Mutations in Tropomyosin on Calcium Regulation of the Actin-Myosin Interaction in Skeletal Muscle.
Bull Exp Biol Med. 2016 Nov;162(1):42-44. doi: 10.1007/s10517-016-3540-x. Epub 2016 Nov 23.
6
The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position.
J Mol Cell Cardiol. 2016 Feb;91:141-7. doi: 10.1016/j.yjmcc.2015.12.014. Epub 2015 Dec 21.
7
Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T-Binding Region of Cardiac Tropomyosin.
Biochemistry. 2017 Jan 10;56(1):250-259. doi: 10.1021/acs.biochem.6b00994. Epub 2016 Dec 16.
10
Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation.
J Muscle Res Cell Motil. 2016 Oct;37(4-5):131-147. doi: 10.1007/s10974-016-9447-3. Epub 2016 Jul 4.

引用本文的文献

1
Aficamten is a small-molecule cardiac myosin inhibitor designed to treat hypertrophic cardiomyopathy.
Nat Cardiovasc Res. 2024 Aug;3(8):1003-1016. doi: 10.1038/s44161-024-00505-0. Epub 2024 Jul 23.
3
Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation.
J Gen Physiol. 2021 Sep 6;153(9). doi: 10.1085/jgp.202012640. Epub 2021 Jul 28.
4
M8R tropomyosin mutation disrupts actin binding and filament regulation: The beginning affects the middle and end.
J Biol Chem. 2020 Dec 11;295(50):17128-17137. doi: 10.1074/jbc.RA120.014713. Epub 2020 Oct 5.
5
Multiscale Models of Cardiac Muscle Biophysics and Tissue Remodeling in Hypertrophic Cardiomyopathies.
Curr Opin Biomed Eng. 2019 Sep;11:35-44. doi: 10.1016/j.cobme.2019.09.005. Epub 2019 Sep 18.
6
A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics.
Biophys J. 2019 Dec 17;117(12):2255-2272. doi: 10.1016/j.bpj.2019.08.003. Epub 2019 Aug 9.
8
Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1.
J Muscle Res Cell Motil. 2020 Mar;41(1):39-53. doi: 10.1007/s10974-019-09532-y. Epub 2019 Jul 3.
9
The Effect of Tropomyosin Mutations on Actin-Tropomyosin Binding: In Search of Lost Time.
Biophys J. 2019 Jun 18;116(12):2275-2284. doi: 10.1016/j.bpj.2019.05.009. Epub 2019 May 13.
10
HCM and DCM cardiomyopathy-linked α-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments.
Arch Biochem Biophys. 2018 Jun 1;647:84-92. doi: 10.1016/j.abb.2018.04.002. Epub 2018 Apr 5.

本文引用的文献

2
The 3-state model of muscle regulation revisited: is a fourth state involved?
J Muscle Res Cell Motil. 2011 Nov;32(3):203-8. doi: 10.1007/s10974-011-9263-8. Epub 2011 Sep 25.
3
Evolutionarily conserved surface residues constitute actin binding sites of tropomyosin.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10150-5. doi: 10.1073/pnas.1101221108. Epub 2011 Jun 3.
4
Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry.
Biophys J. 2011 Feb 16;100(4):1005-13. doi: 10.1016/j.bpj.2010.12.3697.
5
6
The relationship between curvature, flexibility and persistence length in the tropomyosin coiled-coil.
J Struct Biol. 2010 May;170(2):313-8. doi: 10.1016/j.jsb.2010.01.016. Epub 2010 Feb 1.
7
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.
8
Gestalt-binding of tropomyosin to actin filaments.
J Muscle Res Cell Motil. 2008;29(6-8):213-9. doi: 10.1007/s10974-008-9157-6. Epub 2008 Dec 31.
9
Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function.
Adv Protein Chem. 2005;71:121-59. doi: 10.1016/S0065-3233(04)71004-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验