State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
Environ Microbiol. 2012 Feb;14(2):540-58. doi: 10.1111/j.1462-2920.2011.02667.x. Epub 2011 Dec 22.
Investigating the interactions between marine cyanobacteria and their viruses (phages) is important towards understanding the dynamic of ocean's primary productivity. Genome sequencing of marine cyanophages has greatly advanced our understanding about their ecology and evolution. Among 24 reported genomes of cyanophages that infect marine picocyanobacteria, 17 are from cyanomyoviruses and six from cyanopodoviruses, and only one from cyanosiphovirus (Prochlorococcus phage P-SS2). Here we present four complete genome sequences of siphoviruses (S-CBS1, S-CBS2, S-CBS3 and S-CBS4) that infect four different marine Synechococcus strains. Three distinct subtypes were recognized among the five known marine siphoviruses (including P-SS2) in terms of morphology, genome architecture, gene content and sequence similarity. Our study revealed that cyanosiphoviruses are genetically diverse with polyphyletic origin. No core genes were found across these five cyanosiphovirus genomes, and this is in contrast to the fact that many core genes have been found in cyanomyovirus or cyanopodovirus genomes. Interestingly, genes encoding three structural proteins and a lysozyme of S-CBS1 and S-CBS3 showed homology to a prophage-like genetic element in two freshwater Synechococcus elongatus genomes. Re-annotation of the prophage-like genomic region suggests that S. elongatus may contain an intact prophage. Cyanosiphovirus genes involved in DNA metabolism and replication share high sequence homology with those in cyanobacteria, and further phylogenetic analysis based on these genes suggests that ancient and selective genetic exchanges occurred, possibly due to past prophage integration. Metagenomic analysis based on the Global Ocean Sampling database showed that cyanosiphoviruses are present in relatively low abundance in the ocean surface water compared to cyanomyoviruses and cyanopodoviruses.
研究海洋蓝藻与其病毒(噬菌体)之间的相互作用对于了解海洋初级生产力的动态变化非常重要。海洋蓝藻噬菌体的基因组测序极大地促进了我们对其生态和进化的理解。在感染海洋微藻的 24 个蓝藻噬菌体报告基因组中,17 个来自蓝藻肌病毒,6 个来自蓝藻尾病毒,只有 1 个来自蓝藻噬病毒(聚球藻噬菌体 P-SS2)。本研究中我们呈现了四个感染四种不同海洋聚球藻的肌病毒(S-CBS1、S-CBS2、S-CBS3 和 S-CBS4)的完整基因组序列。根据形态、基因组结构、基因组成和序列相似性,在这五个已知的海洋肌病毒(包括 P-SS2)中,我们识别出了三个不同的亚型。我们的研究表明,蓝藻噬病毒具有遗传多样性和多系起源。在这五个蓝藻噬病毒基因组中没有发现核心基因,而在蓝藻肌病毒或蓝藻尾病毒基因组中发现了许多核心基因。有趣的是,S-CBS1 和 S-CBS3 的三个结构蛋白和一个溶菌酶的编码基因与两个淡水聚球藻 elongatus 基因组中的一个类似噬菌体的遗传元件具有同源性。对类似噬菌体基因组区域的重新注释表明,聚球藻 elongatus 可能含有一个完整的噬菌体。参与 DNA 代谢和复制的蓝藻噬病毒基因与蓝藻中的基因具有高度的序列同源性,进一步基于这些基因的系统发育分析表明,可能由于过去的噬菌体整合,发生了古老的和选择性的基因交流。基于全球海洋采样数据库的宏基因组分析表明,与蓝藻肌病毒和蓝藻尾病毒相比,蓝藻噬病毒在海洋表面水中的丰度相对较低。