Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
J Magn Reson. 2012 Jan;214(1):244-51. doi: 10.1016/j.jmr.2011.11.013. Epub 2011 Nov 28.
Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO(2) values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO(2) map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO(2) maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T(2)(∗)) limit the resolution since the signal decays by exp(-t(p)/T(2)(∗)) where the delay time after excitation pulse, t(p), is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO(2) levels since the linewidths are proportionately affected by pO(2). A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO(2) level. In addition, the pO(2) values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO(2) levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO(2) levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO(2) uncertainties are necessary to interpret digitally processed pO(2) illustrations.
基于具有顺磁自旋探针的分子氧弛豫率的电子顺磁共振谱-空间成象(EPRI)衍生的氧图,可以与 MRI 结合使用,以高精度促进特定解剖位置的 pO(2) 值的绘图。配准程序匹配 EPR 和 MR 图像的物理和数字尺寸,可能会以较高的 MRI 分辨率呈现 pO(2) 图,从而夸大氧的空间分辨率,难以准确区分缺氧区域和正常氧区域。后一种区别在监测放射和化学疗法治疗癌症方面至关重要,因为已经确立的是,与正常氧区域相比,缺氧区域对治疗的抵抗力要高出三倍或四倍。本文的目的是描述基于 EPRI 固有分辨率的 pO(2)图。影响 EPRI 固有空间分辨率的谱参数是在频率编码成像中无梯度 EPR 吸收线的半峰全宽(FWHM)高度。在单点成象中,由于信号按 exp(-t(p)/T(2)(∗))衰减,其中激发脉冲后的延迟时间 t(p)与分辨率有关,因此横向弛豫时间(T(2)(∗))也限制了分辨率。尽管在此分离处可以分辨两个点物体的自旋密度,但不足以评估 pO(2)水平的定量变化,因为线宽与 pO(2)成比例地受到影响。至少需要两倍于此分辨率的空间分离才能正确识别 pO(2)水平的变化。此外,由于谱维度引起的不确定性,pO(2)值会变得模糊。由于噪声和低分辨率引起的模糊会调制缺氧和正常氧区域边界处的 pO(2)水平,导致缺氧区域的表观 pO(2)水平更高。因此,有必要指定固有分辨率和 pO(2)不确定性来解释数字处理的 pO(2)图。