Suppr超能文献

EPR 成像中定量氧映射的报告。

Reporting of quantitative oxygen mapping in EPR imaging.

机构信息

Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.

出版信息

J Magn Reson. 2012 Jan;214(1):244-51. doi: 10.1016/j.jmr.2011.11.013. Epub 2011 Nov 28.

Abstract

Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO(2) values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO(2) map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO(2) maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T(2)(∗)) limit the resolution since the signal decays by exp(-t(p)/T(2)(∗)) where the delay time after excitation pulse, t(p), is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO(2) levels since the linewidths are proportionately affected by pO(2). A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO(2) level. In addition, the pO(2) values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO(2) levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO(2) levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO(2) uncertainties are necessary to interpret digitally processed pO(2) illustrations.

摘要

基于具有顺磁自旋探针的分子氧弛豫率的电子顺磁共振谱-空间成象(EPRI)衍生的氧图,可以与 MRI 结合使用,以高精度促进特定解剖位置的 pO(2) 值的绘图。配准程序匹配 EPR 和 MR 图像的物理和数字尺寸,可能会以较高的 MRI 分辨率呈现 pO(2) 图,从而夸大氧的空间分辨率,难以准确区分缺氧区域和正常氧区域。后一种区别在监测放射和化学疗法治疗癌症方面至关重要,因为已经确立的是,与正常氧区域相比,缺氧区域对治疗的抵抗力要高出三倍或四倍。本文的目的是描述基于 EPRI 固有分辨率的 pO(2)图。影响 EPRI 固有空间分辨率的谱参数是在频率编码成像中无梯度 EPR 吸收线的半峰全宽(FWHM)高度。在单点成象中,由于信号按 exp(-t(p)/T(2)(∗))衰减,其中激发脉冲后的延迟时间 t(p)与分辨率有关,因此横向弛豫时间(T(2)(∗))也限制了分辨率。尽管在此分离处可以分辨两个点物体的自旋密度,但不足以评估 pO(2)水平的定量变化,因为线宽与 pO(2)成比例地受到影响。至少需要两倍于此分辨率的空间分离才能正确识别 pO(2)水平的变化。此外,由于谱维度引起的不确定性,pO(2)值会变得模糊。由于噪声和低分辨率引起的模糊会调制缺氧和正常氧区域边界处的 pO(2)水平,导致缺氧区域的表观 pO(2)水平更高。因此,有必要指定固有分辨率和 pO(2)不确定性来解释数字处理的 pO(2)图。

相似文献

1
Reporting of quantitative oxygen mapping in EPR imaging.
J Magn Reson. 2012 Jan;214(1):244-51. doi: 10.1016/j.jmr.2011.11.013. Epub 2011 Nov 28.
5
In vivo multisite oximetry using EPR-NMR coimaging.
J Magn Reson. 2010 Nov;207(1):69-77. doi: 10.1016/j.jmr.2010.08.011. Epub 2010 Aug 24.
6
Electron paramagnetic resonance imaging of tumor pO₂.
Radiat Res. 2012 Apr;177(4):376-86. doi: 10.1667/rr2622.1. Epub 2012 Feb 14.
7
Accelerated 4D quantitative single point EPR imaging using model-based reconstruction.
Magn Reson Med. 2015 Apr;73(4):1692-701. doi: 10.1002/mrm.25282. Epub 2014 May 6.
9
Evaluation of oxygen-response times of phthalocyanine-based crystalline paramagnetic spin probes for EPR oximetry.
J Magn Reson. 2008 Jul;193(1):127-32. doi: 10.1016/j.jmr.2008.04.034. Epub 2008 Apr 29.

引用本文的文献

1
Accelerated EPR imaging using deep learning denoising.
Magn Reson Med. 2025 Jul;94(1):436-446. doi: 10.1002/mrm.30473. Epub 2025 Mar 17.
3
The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia.
Front Pharmacol. 2022 Jul 15;13:853568. doi: 10.3389/fphar.2022.853568. eCollection 2022.
4
High fidelity triangular sweep of the magnetic field for millisecond scan EPR imaging.
J Magn Reson. 2021 Aug;329:107024. doi: 10.1016/j.jmr.2021.107024. Epub 2021 Jun 9.
5
EPR Everywhere.
Appl Magn Reson. 2021;52(8):1113-1139. doi: 10.1007/s00723-020-01304-z. Epub 2021 Jan 24.
6
Dynamic Quantum Sensing of Paramagnetic Species Using Nitrogen-Vacancy Centers in Diamond.
ACS Sens. 2020 Mar 27;5(3):703-710. doi: 10.1021/acssensors.9b01903. Epub 2020 Jan 8.
7
electron paramagnetic resonance oximetry and applications in the brain.
Med Gas Res. 2017 Mar 30;7(1):56-67. doi: 10.4103/2045-9912.202911. eCollection 2017 Jan-Mar.
9
Functional electron paramagnetic resonance imaging of ischemic rat heart: Monitoring of tissue oxygenation and pH.
Magn Reson Med. 2016 Jul;76(1):350-8. doi: 10.1002/mrm.25867. Epub 2015 Aug 24.
10
Accelerated 4D quantitative single point EPR imaging using model-based reconstruction.
Magn Reson Med. 2015 Apr;73(4):1692-701. doi: 10.1002/mrm.25282. Epub 2014 May 6.

本文引用的文献

2
Spatially resolved biologic information from in vivo EPRI, OMRI, and MRI.
Antioxid Redox Signal. 2007 Aug;9(8):1125-41. doi: 10.1089/ars.2007.1638.
4
Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry.
Magn Reson Med. 2004 Oct;52(4):885-92. doi: 10.1002/mrm.20222.
6
Noninvasive in vivo oximetric imaging by radiofrequency FT EPR.
Magn Reson Med. 2002 May;47(5):1001-8. doi: 10.1002/mrm.10133.
7
Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects.
J Natl Cancer Inst. 2001 Feb 21;93(4):266-76. doi: 10.1093/jnci/93.4.266.
9
Tumor hypoxia, drug resistance, and metastases.
J Natl Cancer Inst. 1990 Mar 7;82(5):338-9. doi: 10.1093/jnci/82.5.338.
10
Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging.
Phys Med Biol. 1976 Sep;21(5):689-732. doi: 10.1088/0031-9155/21/5/001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验