Suppr超能文献

使用基于模型的重建的加速4D定量单点电子顺磁共振成像。

Accelerated 4D quantitative single point EPR imaging using model-based reconstruction.

作者信息

Jang Hyungseok, Matsumoto Shingo, Devasahayam Nallathamby, Subramanian Sankaran, Zhuo Jiachen, Krishna Murali C, McMillan Alan B

机构信息

Department of Radiology, Wisconsin Institute for Medical Research, University of Wisconsin, Madison, Wisconsin, USA.

出版信息

Magn Reson Med. 2015 Apr;73(4):1692-701. doi: 10.1002/mrm.25282. Epub 2014 May 6.

Abstract

PURPOSE

Electron paramagnetic resonance imaging has surfaced as a promising noninvasive imaging modality that is capable of imaging tissue oxygenation. Due to extremely short spin-spin relaxation times, electron paramagnetic resonance imaging benefits from single-point imaging and inherently suffers from limited spatial and temporal resolution, preventing localization of small hypoxic tissues and differentiation of hypoxia dynamics, making accelerated imaging a crucial issue.

METHODS

In this study, methods for accelerated single-point imaging were developed by combining a bilateral k-space extrapolation technique with model-based reconstruction that benefits from dense sampling in the parameter domain (measurement of the T2 () decay of a free induction delay). In bilateral kspace extrapolation, more k-space samples are obtained in a sparsely sampled region by bilaterally extrapolating data from temporally neighboring k-spaces. To improve the accuracy of T2 () estimation, a principal component analysis-based method was implemented.

RESULTS

In a computer simulation and a phantom experiment, the proposed methods showed its capability for reliable T2 (*) estimation with high acceleration (8-fold, 15-fold, and 30-fold accelerations for 61×61×61, 95×95×95, and 127×127×127 matrix, respectively).

CONCLUSION

By applying bilateral k-space extrapolation and model-based reconstruction, improved scan times with higher spatial resolution can be achieved in the current single-point electron paramagnetic resonance imaging modality.

摘要

目的

电子顺磁共振成像已成为一种很有前景的无创成像方式,能够对组织氧合进行成像。由于自旋 - 自旋弛豫时间极短,电子顺磁共振成像受益于单点成像,但固有地存在空间和时间分辨率有限的问题,这阻碍了小的缺氧组织的定位以及缺氧动态变化的区分,使得加速成像成为一个关键问题。

方法

在本研究中,通过将双边k空间外推技术与基于模型的重建相结合,开发了加速单点成像方法,该基于模型的重建受益于参数域中的密集采样(自由感应衰减的T2()衰减测量)。在双边k空间外推中,通过从时间上相邻的k空间双边外推数据,在稀疏采样区域获得更多的k空间样本。为提高T2()估计的准确性,实施了一种基于主成分分析的方法。

结果

在计算机模拟和体模实验中,所提出的方法显示出其能够以高加速可靠地估计T2(*)(对于61×61×61、95×95×95和127×127×127矩阵,分别实现8倍、15倍和30倍加速)。

结论

通过应用双边k空间外推和基于模型的重建,在当前的单点电子顺磁共振成像模式下可以实现具有更高空间分辨率的更短扫描时间。

相似文献

1
Accelerated 4D quantitative single point EPR imaging using model-based reconstruction.
Magn Reson Med. 2015 Apr;73(4):1692-701. doi: 10.1002/mrm.25282. Epub 2014 May 6.
2
Single acquisition quantitative single-point electron paramagnetic resonance imaging.
Magn Reson Med. 2013 Oct;70(4):1173-81. doi: 10.1002/mrm.24886. Epub 2013 Aug 1.
3
Accelerated electron paramagnetic resonance imaging using partial Fourier compressed sensing reconstruction.
Magn Reson Imaging. 2017 Apr;37:90-99. doi: 10.1016/j.mri.2016.10.029. Epub 2016 Oct 29.
5
Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance.
Magn Reson Med. 2014 Aug;72(2):362-8. doi: 10.1002/mrm.24926. Epub 2013 Sep 4.
6
Uniform distribution of projection data for improved reconstruction quality of 4D EPR imaging.
J Magn Reson. 2007 Aug;187(2):277-87. doi: 10.1016/j.jmr.2007.05.012. Epub 2007 May 25.
8
Functional electron paramagnetic resonance imaging of ischemic rat heart: Monitoring of tissue oxygenation and pH.
Magn Reson Med. 2016 Jul;76(1):350-8. doi: 10.1002/mrm.25867. Epub 2015 Aug 24.
9
EPR-based oximetric imaging: a combination of single point-based spatial encoding and T weighting.
Magn Reson Med. 2018 Nov;80(5):2275-2287. doi: 10.1002/mrm.27182. Epub 2018 Mar 26.
10
Regularized optimization (RO) reconstruction for oximetric EPR imaging.
J Magn Reson. 2008 Oct;194(2):212-21. doi: 10.1016/j.jmr.2008.07.002. Epub 2008 Jul 10.

引用本文的文献

1
Accelerated EPR imaging using deep learning denoising.
Magn Reson Med. 2025 Jul;94(1):436-446. doi: 10.1002/mrm.30473. Epub 2025 Mar 17.
3
Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy.
Antioxid Redox Signal. 2022 Jan;36(1-3):144-159. doi: 10.1089/ars.2021.0176.
4
EPR Everywhere.
Appl Magn Reson. 2021;52(8):1113-1139. doi: 10.1007/s00723-020-01304-z. Epub 2021 Jan 24.
5
True phase quantitative susceptibility mapping using continuous single-point imaging: a feasibility study.
Magn Reson Med. 2019 Mar;81(3):1907-1914. doi: 10.1002/mrm.27515. Epub 2018 Oct 16.
6
Rapid dual-echo ramped hybrid encoding MR-based attenuation correction (dRHE-MRAC) for PET/MR.
Magn Reson Med. 2018 Jun;79(6):2912-2922. doi: 10.1002/mrm.26953. Epub 2017 Oct 2.
7
A rapid and robust gradient measurement technique using dynamic single-point imaging.
Magn Reson Med. 2017 Sep;78(3):950-962. doi: 10.1002/mrm.26481. Epub 2016 Oct 3.
8
Ramped hybrid encoding for improved ultrashort echo time imaging.
Magn Reson Med. 2016 Sep;76(3):814-25. doi: 10.1002/mrm.25977. Epub 2015 Sep 18.

本文引用的文献

1
Single acquisition quantitative single-point electron paramagnetic resonance imaging.
Magn Reson Med. 2013 Oct;70(4):1173-81. doi: 10.1002/mrm.24886. Epub 2013 Aug 1.
2
3
Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension.
Magn Reson Med. 2013 Nov;70(5):1263-73. doi: 10.1002/mrm.24577. Epub 2012 Dec 4.
4
Evaluation of partial k-space strategies to speed up time-domain EPR imaging.
Magn Reson Med. 2013 Sep;70(3):745-53. doi: 10.1002/mrm.24508. Epub 2012 Oct 8.
6
Reporting of quantitative oxygen mapping in EPR imaging.
J Magn Reson. 2012 Jan;214(1):244-51. doi: 10.1016/j.jmr.2011.11.013. Epub 2011 Nov 28.
7
Compressed sensing reconstruction for magnetic resonance parameter mapping.
Magn Reson Med. 2010 Oct;64(4):1114-20. doi: 10.1002/mrm.22483.
8
k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI.
Magn Reson Med. 2009 Jan;61(1):103-16. doi: 10.1002/mrm.21757.
9
Compressed sensing in dynamic MRI.
Magn Reson Med. 2008 Feb;59(2):365-73. doi: 10.1002/mrm.21477.
10
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验