Research Initiative of Computational Sciences, National Institute of Advanced Industrial, Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
Chemistry. 2012 Jan 16;18(3):951-60. doi: 10.1002/chem.201102562. Epub 2011 Dec 20.
The geometries and interaction energies of complexes of pyridine with C(6)F(5)X, C(6)H(5)X (X = I, Br, Cl, F and H) and R(F)I (R(F) = CF(3), C(2)F(5) and C(3)F(7)) have been studied by ab initio molecular orbital calculations. The CCSD(T) interaction energies (E(int)) for the C(6)F(5)X-pyridine (X = I, Br, Cl, F and H) complexes at the basis set limit were estimated to be -5.59, -4.06, -2.78, -0.19 and -4.37 kcal mol(-1) , respectively, whereas the E(int) values for the C(6)H(5)X-pyridine (X = I, Br, Cl and H) complexes were estimated to be -3.27, -2.17, -1.23 and -1.78 kcal mol(-1), respectively. Electrostatic interactions are the cause of the halogen dependence of the interaction energies and the enhancement of the attraction by the fluorine atoms in C(6)F(5)X. The values of E(int) estimated for the R(F)I-pyridine (R(F) = CF(3), C(2)F(5) and C(3)F(7)) complexes (-5.14, -5.38 and -5.44 kcal mol(-1), respectively) are close to that for the C(6)F(5)I-pyridine complex. Electrostatic interactions are the major source of the attraction in the strong halogen bond although induction and dispersion interactions also contribute to the attraction. Short-range (charge-transfer) interactions do not contribute significantly to the attraction. The magnitude of the directionality of the halogen bond correlates with the magnitude of the attraction. Electrostatic interactions are mainly responsible for the directionality of the halogen bond. The directionality of halogen bonds involving iodine and bromine is high, whereas that of chlorine is low and that of fluorine is negligible. The directionality of the halogen bonds in the C(6)F(5)I- and C(2)F(5)I-pyridine complexes is higher than that in the hydrogen bonds in the water dimer and water-formaldehyde complex. The calculations suggest that the C-I and C-Br halogen bonds play an important role in controlling the structures of molecular assemblies, that the C-Cl bonds play a less important role and that C-F bonds have a negligible impact.
通过从头算分子轨道计算研究了吡啶与 C(6)F(5)X、C(6)H(5)X(X = I、Br、Cl、F 和 H)和 R(F)I(R(F) = CF(3)、C(2)F(5) 和 C(3)F(7))配合物的几何形状和相互作用能。在基组极限下,估算 C(6)F(5)X-吡啶(X = I、Br、Cl、F 和 H)配合物的 CCSD(T)相互作用能(E(int))分别为-5.59、-4.06、-2.78、-0.19 和-4.37 kcal mol(-1),而估算 C(6)H(5)X-吡啶(X = I、Br、Cl 和 H)配合物的 E(int)值分别为-3.27、-2.17、-1.23 和-1.78 kcal mol(-1)。静电相互作用是相互作用能随卤素变化的原因,也是 C(6)F(5)X 中氟原子增强吸引力的原因。估算的 R(F)I-吡啶(R(F) = CF(3)、C(2)F(5) 和 C(3)F(7))配合物的 E(int)值(分别为-5.14、-5.38 和-5.44 kcal mol(-1))接近 C(6)F(5)I-吡啶配合物的值。尽管诱导和色散相互作用也有助于吸引力,但静电相互作用是强卤素键吸引的主要来源。短程(电荷转移)相互作用对吸引力的贡献不大。卤素键的方向性与吸引力的大小相关。静电相互作用主要负责卤素键的方向性。碘和溴的卤素键方向性很高,氯的卤素键方向性较低,氟的卤素键方向性可以忽略不计。C(6)F(5)I-和 C(2)F(5)I-吡啶配合物中的卤素键方向性高于水二聚体和水-甲醛配合物中的氢键。计算表明,C-I 和 C-Br 卤素键在控制分子组装结构方面起着重要作用,C-Cl 键的作用较小,而 C-F 键的影响可以忽略不计。