Suppr超能文献

通过差异相互作用鉴定疾病基因和模块生物标志物。

Identifying disease genes and module biomarkers by differential interactions.

机构信息

Institute of Systems Biology, Shanghai University, Shanghai, China.

出版信息

J Am Med Inform Assoc. 2012 Mar-Apr;19(2):241-8. doi: 10.1136/amiajnl-2011-000658. Epub 2011 Dec 20.

Abstract

OBJECTIVE

A complex disease is generally caused by the mutation of multiple genes or by the dysfunction of multiple biological processes. Systematic identification of causal disease genes and module biomarkers can provide insights into the mechanisms underlying complex diseases, and help develop efficient therapies or effective drugs.

MATERIALS AND METHODS

In this paper, we present a novel approach to predict disease genes and identify dysfunctional networks or modules, based on the analysis of differential interactions between disease and control samples, in contrast to the analysis of differential gene or protein expressions widely adopted in existing methods.

RESULTS AND DISCUSSION

As an example, we applied our method to the study of three-stage microarray data for gastric cancer. We identified network modules or module biomarkers that include a set of genes related to gastric cancer, implying the predictive power of our method. The results on holdout validation data sets show that our identified module can serve as an effective module biomarker for accurately detecting or diagnosing gastric cancer, thereby validating the efficiency of our method.

CONCLUSION

We proposed a new approach to detect module biomarkers for diseases, and the results on gastric cancer demonstrated that the differential interactions are useful to detect dysfunctional modules in the molecular interaction network, which in turn can be used as robust module biomarkers.

摘要

目的

复杂疾病通常是由多个基因的突变或多个生物过程的功能障碍引起的。系统地识别致病基因和模块生物标志物可以深入了解复杂疾病的机制,并有助于开发有效的治疗方法或有效的药物。

材料与方法

在本文中,我们提出了一种新的方法,基于对疾病和对照样本之间差异相互作用的分析,而不是广泛应用于现有方法的差异基因或蛋白质表达分析,来预测疾病基因和识别功能失调的网络或模块。

结果与讨论

例如,我们将我们的方法应用于胃癌三阶段微阵列数据的研究。我们确定了包含一组与胃癌相关的基因的网络模块或模块生物标志物,这表明了我们方法的预测能力。在保留验证数据集上的结果表明,我们识别的模块可以作为一种有效的模块生物标志物,用于准确检测或诊断胃癌,从而验证了我们方法的效率。

结论

我们提出了一种用于检测疾病模块生物标志物的新方法,胃癌的结果表明,差异相互作用有助于检测分子相互作用网络中的功能失调模块,而这些模块反过来又可以作为稳健的模块生物标志物。

相似文献

1
Identifying disease genes and module biomarkers by differential interactions.通过差异相互作用鉴定疾病基因和模块生物标志物。
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):241-8. doi: 10.1136/amiajnl-2011-000658. Epub 2011 Dec 20.
3
Gene expression profiling and bioinformatics analysis of gastric carcinoma.胃癌的基因表达谱分析和生物信息学研究。
Exp Mol Pathol. 2014 Jun;96(3):361-6. doi: 10.1016/j.yexmp.2014.02.007. Epub 2014 Feb 28.

引用本文的文献

4
Exploring drought-responsive crucial genes in .探索……中干旱响应关键基因
iScience. 2022 Oct 14;25(11):105347. doi: 10.1016/j.isci.2022.105347. eCollection 2022 Nov 18.
6
Data analysis methods for defining biomarkers from omics data.用于从组学数据中定义生物标志物的数据分析方法。
Anal Bioanal Chem. 2022 Jan;414(1):235-250. doi: 10.1007/s00216-021-03813-7. Epub 2021 Dec 24.

本文引用的文献

1
NOA: a novel Network Ontology Analysis method.NOA:一种新颖的网络本体分析方法。
Nucleic Acids Res. 2011 Jul;39(13):e87. doi: 10.1093/nar/gkr251. Epub 2011 May 4.
3
Rewiring of genetic networks in response to DNA damage.遗传网络对 DNA 损伤的响应重编。
Science. 2010 Dec 3;330(6009):1385-9. doi: 10.1126/science.1195618.
6
p53 and E2f: partners in life and death.p53与E2F:生死相依的伙伴。
Nat Rev Cancer. 2009 Oct;9(10):738-48. doi: 10.1038/nrc2718.
7
Recent patterns in gastric cancer: a global overview.胃癌的近期趋势:全球概述
Int J Cancer. 2009 Aug 1;125(3):666-73. doi: 10.1002/ijc.24290.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验