Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou, 310024, China.
BMC Bioinformatics. 2022 Jun 15;23(1):230. doi: 10.1186/s12859-022-04772-1.
Abundant datasets generated from various big science projects on diseases have presented great challenges and opportunities, which contributed to unfolding the complexity of diseases. The discovery of disease-associated molecular networks for each individual plays an important role in personalized therapy and precision treatment of cancer-based on the reference networks. However, there are no effective ways to distinguish the consistency of different reference networks. In this study, we developed a statistical method, i.e. a sample-specific differential network (SSDN), to construct and analyze such networks based on gene expression of a single sample against a reference dataset. We proved that the SSDN is structurally consistent even with different reference datasets if the reference dataset can follow certain conditions. The SSDN also can be used to identify patient-specific disease modules or network biomarkers as well as predict the potential driver genes of a tumor sample.
大量来自各种疾病大型科学项目生成的数据集带来了巨大的挑战和机遇,有助于揭示疾病的复杂性。为了实现癌症的个体化治疗和精准治疗,发现每个个体的疾病相关分子网络起着重要作用——基于参考网络。然而,目前还没有有效的方法来区分不同参考网络的一致性。在这项研究中,我们开发了一种统计方法,即样本特异性差异网络(SSDN),用于根据单个样本相对于参考数据集的基因表达来构建和分析此类网络。我们证明,如果参考数据集可以满足某些条件,那么即使使用不同的参考数据集,SSDN 在结构上也是一致的。SSDN 还可用于识别患者特异性疾病模块或网络生物标志物,并预测肿瘤样本的潜在驱动基因。