Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2012 Jan 25;134(3):1404-7. doi: 10.1021/ja2093508. Epub 2012 Jan 12.
The tertiary structures of functional RNA molecules remain difficult to decipher. A new generation of automated RNA structure prediction methods may help address these challenges but have not yet been experimentally validated. Here we apply four prediction tools to a class of double glycine riboswitches that can bind two ligands cooperatively. A novel method (BPPalign), RMdetect, JAR3D, and Rosetta 3D modeling give consistent predictions for a new stem P0 and a kink-turn motif. These elements structure the linker between the RNAs' double aptamers. Chemical mapping on the Fusobacterium nucleatum riboswitch with N-methylisatoic anhydride, dimethyl sulfate and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate probing, mutate-and-map studies, and mutation/rescue experiments all provide strong evidence for the structured linker. Under solution conditions that permit rigorous thermodynamic analysis, disrupting this helix-junction-helix structure gives 120- and 6-30-fold poorer dissociation constants for the RNA's two glycine-binding transitions, corresponding to an overall energetic impact of 4.3 ± 0.5 kcal/mol. Prior biochemical and crystallography studies did not include this critical element due to over-truncation of the RNA. We speculate that several further undiscovered elements are likely to exist in the flanking regions of this and other functional RNAs, and automated prediction tools can play a useful role in their detection and dissection.
功能 RNA 分子的三级结构仍然难以破译。新一代的自动化 RNA 结构预测方法可能有助于解决这些挑战,但尚未经过实验验证。在这里,我们将四种预测工具应用于一类可以协同结合两种配体的双甘氨酰 RNA 开关。一种新方法(BPPalign)、RMdetect、JAR3D 和 Rosetta 3D 建模对新茎 P0 和拐点环模体给出了一致的预测。这些元件构成了 RNA 双适体之间的连接物。用 N-甲基异邻苯二甲酰亚胺、硫酸二甲酯和 1-环己基-3-(2-吗啉乙基)碳二亚胺甲基对甲苯磺酸盐探测 Fusobacterium nucleatum 核糖开关的化学作图、突变和挽救实验以及突变/挽救实验都为有结构的连接物提供了强有力的证据。在允许严格热力学分析的溶液条件下,破坏这个螺旋-连接-螺旋结构会使 RNA 的两个甘氨酸结合转变的解离常数分别降低 120 倍和 6-30 倍,对应于 4.3 ± 0.5 kcal/mol 的整体能量影响。先前的生化和晶体学研究由于 RNA 的过度截断而没有包括这个关键元件。我们推测,在这个和其他功能 RNA 的侧翼区域可能存在几个进一步未被发现的元件,而自动化预测工具可以在它们的检测和剖析中发挥有用的作用。