National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, USA.
RNA. 2013 Feb;19(2):167-76. doi: 10.1261/rna.036269.112. Epub 2012 Dec 17.
Most known glycine riboswitches have two homologous aptamer domains arranged in tandem and separated by a short linker. The two aptamers associate through reciprocal "quaternary" interactions that have been proposed to result in cooperative glycine binding. Recently, the interaptamer linker was found to form helix P0 with a previously unrecognized segment 5' to the first aptamer domain. P0 was shown to increase glycine affinity, abolish cooperativity, and conform to the K-turn motif consensus. We examine the global thermodynamic and structural role of P0 using isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS), respectively. To evaluate the generality of P0 function, we prepared glycine riboswitch constructs lacking and including P0 from Bacillus subtilis, Fusobacterium nucleatum, and Vibrio cholerae. We find that P0 indeed folds into a K-turn, supports partial pre-folding of all three glycine-free RNAs, and is required for ITC observation of glycine binding under physiologic Mg(2+) concentrations. Except for the unusually small riboswitch from F. nucleatum, the K-turn is needed for maximally compacting the glycine-bound states of the RNAs. Formation of a ribonucleoprotein complex between the B. subtilis or the F. nucleatum RNA constructs and the bacterial K-turn binding protein YbxF promotes additional folding of the free riboswitch, and enhances glycine binding. Consistent with the previously reported loss of cooperativity, P0-containing B. subtilis and V. cholerae tandem aptamers bound no more than one glycine molecule per riboswitch. Our results indicate that the P0 K-turn helps organize the quaternary structure of tandem glycine riboswitches, thereby facilitating ligand binding under physiologic conditions.
大多数已知的甘氨酸核糖开关具有两个串联排列且由短接头分隔的同源适体结构域。这两个适体通过相互的“四级”相互作用而缔合,据推测这种相互作用导致甘氨酸结合的协同性。最近,发现接头内的两个适体之间的连接区与第一个适体结构域的 5'端以前未被识别的片段一起形成 P0 螺旋。已证明 P0 增加甘氨酸亲和力、消除协同性并符合 K -turn 基序的共识。我们分别使用等温滴定量热法(ITC)和小角度 X 射线散射(SAXS)来研究 P0 的整体热力学和结构作用。为了评估 P0 功能的普遍性,我们从枯草芽孢杆菌、核梭杆菌和霍乱弧菌中制备了缺乏和包含 P0 的甘氨酸核糖开关构建体。我们发现 P0 确实折叠成 K-turn,支持所有三种甘氨酸游离 RNA 的部分预折叠,并需要在生理 Mg2+浓度下观察 ITC 甘氨酸结合。除了核梭杆菌的异常小的核糖开关外,K-turn 对于最大程度地压缩 RNA 的甘氨酸结合状态是必需的。枯草芽孢杆菌或核梭杆菌 RNA 构建体与细菌 K-turn 结合蛋白 YbxF 之间形成核糖核蛋白复合物促进游离核糖开关的进一步折叠,并增强甘氨酸结合。与先前报道的协同性丧失一致,含有 P0 的枯草芽孢杆菌和霍乱弧菌串联适体每个核糖开关结合的甘氨酸分子不超过一个。我们的结果表明,P0 K-turn 有助于组织串联甘氨酸核糖开关的四级结构,从而在生理条件下促进配体结合。