Thoemmes F
Institut für Erziehungswissenschaft, Abteilung Empirische Bildungsforschung und Pädagogische Psychologie, Universität Tübingen, Tübingen.
Gesundheitswesen. 2011 Dec;73(12):880-3. doi: 10.1055/s-0031-1291198. Epub 2011 Dec 22.
Different research traditions have separately developed various theories of causal inference. Three of these approaches are contrasted in this paper. In particular, I will explore differences and similarities of the potential outcomes approach, the generalized causal inference framework of Campbell, and the theory of causal DAGs. Each of the 3 approaches has strengths and weaknesses; however I argue that it is possible to combine them in applied research. The potential outcomes approach offers an exact and formal definition of a causal effect, however it is not very informative as to which covariates need to be selected for adjustment. The Campbell framework lacks a precise mathematical definition of a causal effect, but offers a long list of threats to internal validity that researchers can try to rule out in their studies. Causal DAGs offer applied researchers a tool to find minimally sufficient adjustment sets of covariates that allow an unbiased estimation of a causal effect, given that researchers are willing and able to encode their causal assumptions of all important covariates.
不同的研究传统分别发展出了各种因果推断理论。本文将对比其中三种方法。具体而言,我将探讨潜在结果法、坎贝尔的广义因果推断框架以及因果DAG理论之间的异同。这三种方法各有优缺点;然而,我认为在应用研究中可以将它们结合起来。潜在结果法提供了因果效应的精确形式定义,但其对于需要选择哪些协变量进行调整的指导作用不大。坎贝尔框架缺乏因果效应的精确数学定义,但提供了一长串对内部效度的威胁因素,研究人员可以在研究中尝试排除这些因素。因果DAG为应用研究人员提供了一种工具,在研究人员愿意且能够对所有重要协变量的因果假设进行编码的情况下,找到协变量的最小充分调整集,从而实现对因果效应的无偏估计。