Stang A
Institut für Klinische Epidemiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale).
Gesundheitswesen. 2011 Dec;73(12):884-7. doi: 10.1055/s-0031-1287843. Epub 2011 Dec 22.
In theory, a cause of an effect in an individual and a group can be defined. However, in empirical studies the requirements of this definition cannot be fulfilled with certainty: an individual or a group of people cannot be exposed and unexposed at the same point in time. Therefore, substitute populations are used to answer what the risk of an outcome would have been, if the actually exposed group would not have been exposed (or vice versa). If the substitute population is not able to deliver this information, confounding is present according to the counterfactual definition. The so-called collapsibility definition of confounders suffers from five limitations and therefore does not appear to be acceptable. The classical theory of confounders is a special case of directed acyclic graphs (DAGs), where only one extraneous variable might be a potential confounder. In contrast to previous theories on confounding, DAGs are able to show when adjustment for covariates produces bias. Furthermore, DAGs are able to use also information on relations among confounders.
理论上,可以定义个体和群体中某个效应的原因。然而,在实证研究中,这个定义的要求无法确定地得到满足:个体或一群人不能在同一时间既暴露又未暴露。因此,使用替代人群来回答如果实际暴露组未暴露(反之亦然),结果的风险会是多少。如果替代人群无法提供此信息,根据反事实定义就存在混杂。所谓混杂因素的可压缩性定义存在五个局限性,因此似乎不可接受。混杂因素的经典理论是有向无环图(DAG)的一个特例,其中只有一个外部变量可能是潜在的混杂因素。与以往关于混杂的理论不同,有向无环图能够显示何时对协变量进行调整会产生偏差。此外,有向无环图还能够利用关于混杂因素之间关系的信息。