Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
J Biol Chem. 2012 Mar 9;287(11):7990-8000. doi: 10.1074/jbc.M111.315473. Epub 2011 Dec 22.
Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.
结核分枝杆菌具有独特的细胞表面脂质,这些脂质与毒力有关。其中最丰富的是硫酸酯糖脂 1(SL-1),一种四酰基硫酸海藻糖甘油二脂。尽管 SL-1 生物合成的早期步骤已为人所知,但尚不清楚完成最后酰化反应的机制。我们提供了遗传和生化证据,证明了两种蛋白 Chp1 和 Sap(分别对应基因座 rv3822 和 rv3821)的活性,这些蛋白完成了这一途径。膜相关酰基转移酶 Chp1 接受合成的二酰基硫酸酯,并在两个连续反应中从一个供体底物分子中以区域选择性方式将酰基转移到第二个受体分子上,生成四酰化产物。Chp1 在体外完全有活性,但在结核分枝杆菌中,其功能由先前鉴定的硫酸酯脂转运蛋白 MmpL8 增强。我们还表明,整合膜蛋白 Sap 和 MmpL8 对于硫酸酯脂转运都是必需的。最后,脂酶抑制剂四氢拉帕他汀破坏了结核分枝杆菌中 Chp1 的活性,这表明了一种在体内干扰 SL-1 生物合成的途径。这些数据完成了 SL-1 生物合成途径,并证实了一种模型,即通过多个蛋白的活性,脂质生物合成和跨膜运输在膜-细胞质界面处偶联,可能作为一个大分子复合物。