Suppr超能文献

癌症代谢中的囚徒困境。

Prisoner's dilemma in cancer metabolism.

机构信息

Mathematical, Computational Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America.

出版信息

PLoS One. 2011;6(12):e28576. doi: 10.1371/journal.pone.0028576. Epub 2011 Dec 14.

Abstract

As tumors outgrow their blood supply and become oxygen deprived, they switch to less energetically efficient but oxygen-independent anaerobic glucose metabolism. However, cancer cells maintain glycolytic phenotype even in the areas of ample oxygen supply (Warburg effect). It has been hypothesized that the competitive advantage that glycolytic cells get over aerobic cells is achieved through secretion of lactic acid, which is a by-product of glycolysis. It creates acidic microenvironment around the tumor that can be toxic to normal somatic cells. This interaction can be seen as a prisoner's dilemma: from the point of view of metabolic payoffs, it is better for cells to cooperate and become better competitors but neither cell has an incentive to unilaterally change its metabolic strategy. In this paper a novel mathematical technique, which allows reducing an otherwise infinitely dimensional system to low dimensionality, is used to demonstrate that changing the environment can take the cells out of this equilibrium and that it is cooperation that can in fact lead to the cell population committing evolutionary suicide.

摘要

当肿瘤生长超出其血液供应并变得缺氧时,它们会转而采用能量效率较低但不依赖氧气的无氧葡萄糖代谢。然而,癌细胞即使在氧气供应充足的区域也能维持糖酵解表型(Warburg 效应)。据推测,糖酵解细胞相对于需氧细胞获得的竞争优势是通过分泌乳酸实现的,乳酸是糖酵解的副产物。它在肿瘤周围产生酸性微环境,对正常体细胞有毒。这种相互作用可以看作是囚徒困境:从代谢收益的角度来看,细胞合作并成为更好的竞争者是更好的选择,但没有一个细胞有动力单方面改变其代谢策略。在本文中,使用了一种新颖的数学技术,该技术可以将原本无限维的系统降低到低维,用于证明改变环境可以使细胞摆脱这种平衡,而实际上是合作可以导致细胞群体进行进化自杀。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9c/3237466/ee98dc77b181/pone.0028576.g001.jpg

相似文献

1
Prisoner's dilemma in cancer metabolism.
PLoS One. 2011;6(12):e28576. doi: 10.1371/journal.pone.0028576. Epub 2011 Dec 14.
2
Evolutionary dynamics of the Warburg effect: glycolysis as a collective action problem among cancer cells.
J Theor Biol. 2014 Jan 21;341:1-8. doi: 10.1016/j.jtbi.2013.09.017. Epub 2013 Sep 27.
3
Evolutionary escape from the prisoner's dilemma.
J Theor Biol. 2007 Apr 7;245(3):411-22. doi: 10.1016/j.jtbi.2006.10.011. Epub 2006 Oct 18.
5
Interaction times change evolutionary outcomes: Two-player matrix games.
J Theor Biol. 2017 Mar 7;416:199-207. doi: 10.1016/j.jtbi.2017.01.010. Epub 2017 Jan 6.
6
The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
Int J Radiat Biol. 2019 Jul;95(7):912-919. doi: 10.1080/09553002.2019.1589653. Epub 2019 Mar 22.
7
Heterogeneity and proliferation of invasive cancer subclones in game theory models of the Warburg effect.
Cell Prolif. 2015 Apr;48(2):259-69. doi: 10.1111/cpr.12169. Epub 2015 Feb 3.
8
Collapse of cooperation in evolving games.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17558-63. doi: 10.1073/pnas.1408618111. Epub 2014 Nov 24.
9
Individual variation evades the prisoner's dilemma.
BMC Evol Biol. 2002 Sep 10;2:15. doi: 10.1186/1471-2148-2-15.
10
A strategy with novel evolutionary features for the iterated prisoner's dilemma.
Evol Comput. 2009 Summer;17(2):257-74. doi: 10.1162/evco.2009.17.2.257.

引用本文的文献

1
Peto's "Paradox" and Six Degrees of Cancer Prevalence.
Cells. 2024 Jan 21;13(2):197. doi: 10.3390/cells13020197.
2
The role of evolutionary game theory in spatial and non-spatial models of the survival of cooperation in cancer: a review.
J R Soc Interface. 2022 Aug;19(193):20220346. doi: 10.1098/rsif.2022.0346. Epub 2022 Aug 17.
3
GLUT1 production in cancer cells: a tragedy of the commons.
NPJ Syst Biol Appl. 2022 Jun 29;8(1):22. doi: 10.1038/s41540-022-00229-6.
4
DDR1 promotes LoVo cell proliferation by regulating energy metabolism.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(5):615-624. doi: 10.3724/abbs.2022038.
6
Coordination games in cancer.
PLoS One. 2022 Jan 21;17(1):e0261578. doi: 10.1371/journal.pone.0261578. eCollection 2022.
7
Eco-oncology: Applying ecological principles to understand and manage cancer.
Ecol Evol. 2020 Jul 29;10(16):8538-8553. doi: 10.1002/ece3.6590. eCollection 2020 Aug.
8
Evolution of cooperation in an epithelium.
J R Soc Interface. 2019 Mar 29;16(152):20180918. doi: 10.1098/rsif.2018.0918.
9
Mathematical Modeling of the Function of Warburg Effect in Tumor Microenvironment.
Sci Rep. 2018 Jun 11;8(1):8903. doi: 10.1038/s41598-018-27303-6.
10
The prisoner's dilemma as a cancer model.
Converg Sci Phys Oncol. 2016 Sep;2(3). doi: 10.1088/2057-1739/2/3/035002. Epub 2016 Jul 4.

本文引用的文献

1
Q&A: Cancer: clues from cell metabolism.
Nature. 2010 Jun 3;465(7298):562-4. doi: 10.1038/465562a.
2
Mitochondrial metabolism and cancer.
Ann N Y Acad Sci. 2009 Oct;1177:66-73. doi: 10.1111/j.1749-6632.2009.05039.x.
3
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.
4
On mathematical theory of selection: continuous time population dynamics.
J Math Biol. 2010 Jan;60(1):107-29. doi: 10.1007/s00285-009-0252-0. Epub 2009 Mar 13.
5
Bicarbonate increases tumor pH and inhibits spontaneous metastases.
Cancer Res. 2009 Mar 15;69(6):2260-8. doi: 10.1158/0008-5472.CAN-07-5575. Epub 2009 Mar 10.
6
Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond.
Pharmacol Ther. 2009 Jan;121(1):29-40. doi: 10.1016/j.pharmthera.2008.09.005. Epub 2008 Nov 1.
7
Defeating pathogen drug resistance: guidance from evolutionary theory.
Evolution. 2008 Dec;62(12):3185-91. doi: 10.1111/j.1558-5646.2008.00525.x. Epub 2008 Sep 18.
8
A microenvironmental model of carcinogenesis.
Nat Rev Cancer. 2008 Jan;8(1):56-61. doi: 10.1038/nrc2255.
9
Biological stoichiometry in human cancer.
PLoS One. 2007 Oct 10;2(10):e1028. doi: 10.1371/journal.pone.0001028.
10
Solid cancer incidence in atomic bomb survivors: 1958-1998.
Radiat Res. 2007 Jul;168(1):1-64. doi: 10.1667/RR0763.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验