Miriyala Sumitra, Spasojevic Ivan, Tovmasyan Artak, Salvemini Daniela, Vujaskovic Zeljko, St Clair Daret, Batinic-Haberle Ines
Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536, USA.
Biochim Biophys Acta. 2012 May;1822(5):794-814. doi: 10.1016/j.bbadis.2011.12.002. Epub 2011 Dec 9.
Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD - endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ(10) in detail, and briefly addresses several other compounds that are either catalysts of O(2)(-) dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O(2)(-) dismutation, MitoQ(10) oxidizes O(2)(-) to O(2) with a high rate constant. In vivo it is readily reduced to quinol, MitoQH(2), which in turn reduces ONOO(-) to NO(2), producing semiquinone radical that subsequently dismutes to MitoQ(10) and MitoQH(2), completing the "catalytic" cycle. In MitoQ(10), the redox-active unit was coupled via 10-carbon atom alkyl chain to monocationic triphenylphosphonium ion in order to reach the mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into the mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogs are particularly effective for treating central nervous system injuries where mitochondria play key role. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
对线粒体在生理和病理条件下作用的认识不断加深,与此同时,对能够模拟锰超氧化物歧化酶(MnSOD)的合成和天然化合物的探索也不断增加。MnSOD是从细菌到人类等几乎所有需氧生物生存所必需的内源性线粒体抗氧化防御物质。本综述详细描述了最成功的线粒体靶向氧化还原活性化合物、锰卟啉和MitoQ(10),并简要介绍了其他几种化合物,它们要么是超氧阴离子(O(2)(-))歧化反应的催化剂,要么是其非催化清除剂,据报道可减轻线粒体功能障碍。虽然MitoQ(10)不是O(2)(-)歧化反应的真正催化剂(SOD模拟物),但它以高反应速率常数将O(2)(-)氧化为O(2)。在体内,它很容易还原为氢醌MitoQH(2),MitoQH(2)进而将过氧亚硝酸根(ONOO(-))还原为亚硝酸根(NO(2)),产生半醌自由基,随后半醌自由基歧化为MitoQ(10)和MitoQH(2),完成“催化”循环。在MitoQ(10)中,氧化还原活性单元通过10个碳原子的烷基链与单阳离子三苯基膦离子偶联,以便进入线粒体。然而,基于锰卟啉的SOD模拟物的设计使得它们的多个阳离子电荷和烷基链既决定了它们显著的SOD活性,又能将它们带入线粒体。一些动物功效研究,如皮肤致癌作用和紫外线B(UVB)介导的线粒体DNA损伤,以及酿酒酵母和小鼠心脏的亚细胞分布研究,提供了明确的证据,表明锰卟啉模拟了MnSOD的作用位点和作用方式,这反过来又促成了它们在众多体外和体内氧化应激模型中的功效。在一类锰卟啉中,亲脂性类似物在治疗线粒体起关键作用的中枢神经系统损伤方面特别有效。本文是名为:疾病中的抗氧化剂和抗氧化治疗的特刊的一部分。