Rebouças Júlio S, DeFreitas-Silva Gilson, Spasojević Ivan, Idemori Ynara M, Benov Ludmil, Batinić-Haberle Ines
Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA.
Free Radic Biol Med. 2008 Jul 15;45(2):201-10. doi: 10.1016/j.freeradbiomed.2008.04.009. Epub 2008 May 5.
Understanding the factors that determine the ability of Mn porphyrins to scavenge reactive species is essential for tuning their in vivo efficacy. We present herein the revised structure-activity relationships accounting for the critical importance of electrostatics in the Mn porphyrin-based redox modulation systems and show that the design of effective SOD mimics (per se) based on anionic porphyrins is greatly hindered by inappropriate electrostatics. A new strategy for the beta-octabromination of the prototypical anionic Mn porphyrins Mn(III) meso-tetrakis(p-carboxylatophenyl)porphyrin (Mn(III)TCPP or MnTBAP(3-)) and Mn(III) meso-tetrakis(p-sulfonatophenyl)porphyrin (Mn(III)TSPP), to yield the corresponding anionic analogues Mn(III)Br(8)TCPP and Mn(III)Br(8)TSPP, respectively, is described along with characterization data, stability studies, and their ability to substitute for SOD in SOD-deficient Escherichia coli. Despite the Mn(III)/Mn(II) reduction potential of Mn(III)Br(8)TCPP and Mn(III)Br(8)TSPP being close to the SOD-enzyme optimum and nearly identical to that of the cationic Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (Mn(III)TM-2-PyP(5+)), the SOD activity of both anionic brominated porphyrins (Mn(III)Br(8)TCPP, E(1/2)=+213 mV vs NHE, log k(cat)=5.07; Mn(III)Br(8)TSPP, E(1/2)=+209 mV, log k(cat)=5.56) is considerably lower than that of Mn(III)TM-2-PyP(5+) (E(1/2)=+220 mV, log k(cat)=7.79). This illustrates the impact of electrostatic guidance of O(2)(-) toward the metal center of the mimic. With low k(cat), the Mn(III)TCPP, Mn(III)TSPP, and Mn(III)Br(8)TCPP did not rescue SOD-deficient E. coli. The striking ability of Mn(III)Br(8)TSPP to substitute for the SOD enzymes in the E. coli model does not correlate with its log k(cat). In fact, the protectiveness of Mn(III)Br(8)TSPP is comparable to or better than that of the potent SOD mimic Mn(III)TM-2-PyP(5+), even though the dismutation rate constant of the anionic complex is 170-fold smaller. Analyses of the medium and E. coli cell extract revealed that the major species in the Mn(III)Br(8)TSPP system is not the Mn complex, but the free-base porphyrin H(2)Br(8)TSPP instead. Control experiments with extracellular MnCl(2) showed the lack of E. coli protection, indicating that "free" Mn(2+) cannot enter the cell to a significant extent. We proposed herein the alternative mechanism where a labile Mn porphyrin Mn(III)Br(8)TSPP is not an SOD mimic per se but carries Mn into the E. coli cell.
了解决定锰卟啉清除活性物种能力的因素对于调节其体内疗效至关重要。我们在此提出了修正的构效关系,阐述了静电作用在基于锰卟啉的氧化还原调节系统中的关键重要性,并表明基于阴离子卟啉设计有效的超氧化物歧化酶(SOD)模拟物(本身)会因不适当的静电作用而受到极大阻碍。本文描述了一种对典型阴离子锰卟啉锰(III)中-四(对-羧基苯基)卟啉(Mn(III)TCPP或MnTBAP(3-))和锰(III)中-四(对-磺酸苯基)卟啉(Mn(III)TSPP)进行β-八溴化的新策略,以分别生成相应的阴离子类似物Mn(III)Br(8)TCPP和Mn(III)Br(8)TSPP,同时给出了表征数据、稳定性研究以及它们在超氧化物歧化酶缺陷型大肠杆菌中替代SOD的能力。尽管Mn(III)Br(8)TCPP和Mn(III)Br(8)TSPP的锰(III)/锰(II)还原电位接近SOD酶的最佳值且与阳离子锰(III)中-四(N-甲基吡啶-2-基)卟啉(Mn(III)TM-2-PyP(5+))的几乎相同,但两种阴离子溴化卟啉(Mn(III)Br(8)TCPP,相对于标准氢电极(NHE),E(1/2)= +213 mV,log k(cat)=5.07;Mn(III)Br(8)TSPP,E(1/2)= +209 mV,log k(cat)=5.56)的SOD活性远低于Mn(III)TM-2-PyP(5+)(E(1/2)= +220 mV,log k(cat)=7.79)。这说明了超氧阴离子(O(2)(-))向模拟物金属中心的静电引导作用的影响。由于催化常数(k(cat))较低,Mn(III)TCPP、Mn(III)TSPP和Mn(III)Br(8)TCPP无法拯救超氧化物歧化酶缺陷型大肠杆菌。Mn(III)Br(8)TSPP在大肠杆菌模型中替代SOD酶的显著能力与其log k(cat)不相关。实际上,Mn(III)Br(8)TSPP的保护作用与强效SOD模拟物Mn(III)TM-2-PyP(5+)相当或更好,尽管阴离子配合物的歧化速率常数小170倍。对培养基和大肠杆菌细胞提取物的分析表明,Mn(III)Br(8)TSPP系统中的主要物种不是锰配合物,而是游离碱卟啉H(2)Br(8)TSPP。用细胞外氯化锰进行的对照实验表明缺乏对大肠杆菌的保护作用,这表明“游离”的锰(II+)不能大量进入细胞。我们在此提出了一种替代机制,即不稳定的锰卟啉Mn(III)Br(8)TSPP本身不是SOD模拟物,而是将锰携带到大肠杆菌细胞中。