Suppr超能文献

CA-125 速率的纵向评估与卵巢癌的预测。

Longitudinal evaluation of CA-125 velocity and prediction of ovarian cancer.

机构信息

Biometry Research Group, National Cancer Institute, Bethesda, MD, USA.

出版信息

Gynecol Oncol. 2012 Apr;125(1):70-4. doi: 10.1016/j.ygyno.2011.12.440. Epub 2011 Dec 22.

Abstract

OBJECTIVE

To determine whether CA-125 velocity is a statistically significant predictor of ovarian cancer and develop a classification rule to screen for ovarian cancer.

METHODS

In the ovarian component of the PLCO cancer screening trial, 28,038 women aged 55-74 had at least two CA-125 screening tests. Ovarian cancer was diagnosed in 72 (0.26%) women. A multiple logistic regression model was developed to evaluate CA-125 velocity and other related covariates as predictors of ovarian cancer. Predictive accuracy was assessed by the concordance index and measures of discrimination and calibration while the fit of the model was assessed by the Hosmer and Lemeshow's goodness-of-fit χ(2)test.

RESULTS

CA-125 velocity decreased as the number of CA-125 measurements increased but was unaffected by age at baseline screen and family history of ovarian cancer. The average velocity (19.749U/ml per month) of the cancer group was more than 500 times the average velocity (0.035U/ml per month) of the non-cancer group.

CONCLUSION

Among six covariates used in the model, CA-125 velocity and time intervals between baseline and second to last screening test and between last two screening tests were statistically significant predictors of ovarian cancer. The chance of having ovarian cancer increased as velocity increased, and the chance decreased when the time intervals between baseline and the second to last screening test and between last two screening tests of an individual increased.

摘要

目的

确定 CA-125 速度是否为卵巢癌的统计学显著预测因子,并制定用于筛查卵巢癌的分类规则。

方法

在 PLCO 癌症筛查试验的卵巢部分中,共有 28038 名年龄在 55-74 岁的女性至少进行了两次 CA-125 筛查测试。72 名(0.26%)女性被诊断患有卵巢癌。建立了一个多变量逻辑回归模型,以评估 CA-125 速度和其他相关协变量作为卵巢癌的预测因子。通过一致性指数和判别和校准度量来评估预测准确性,同时通过 Hosmer 和 Lemeshow 的拟合优度 χ(2)检验评估模型的拟合情况。

结果

CA-125 速度随着 CA-125 测量次数的增加而降低,但不受基线筛查时的年龄和卵巢癌家族史的影响。癌症组的平均速度(19.749U/ml 每月)是无癌组平均速度(0.035U/ml 每月)的 500 多倍。

结论

在模型中使用的六个协变量中,CA-125 速度以及基线和倒数第二次筛查测试之间以及最后两次筛查测试之间的时间间隔是卵巢癌的统计学显著预测因子。随着速度的增加,患卵巢癌的机会增加,而个体从基线到倒数第二次筛查测试以及最后两次筛查测试之间的时间间隔增加时,机会减少。

相似文献

1
Longitudinal evaluation of CA-125 velocity and prediction of ovarian cancer.
Gynecol Oncol. 2012 Apr;125(1):70-4. doi: 10.1016/j.ygyno.2011.12.440. Epub 2011 Dec 22.

引用本文的文献

6
CA125 and Ovarian Cancer: A Comprehensive Review.
Cancers (Basel). 2020 Dec 11;12(12):3730. doi: 10.3390/cancers12123730.
8
Baseline and On-Treatment Characteristics of Serum Tumor Markers in Stage IV Oncogene-Addicted Adenocarcinoma of the Lung.
J Thorac Oncol. 2018 Jan;13(1):134-138. doi: 10.1016/j.jtho.2017.08.005. Epub 2017 Aug 24.
10
Comparison of LUMIPULSE(®) G1200 With Kryptor and Modular E170 for the Measurement of Seven Tumor Markers.
J Clin Lab Anal. 2016 Jan;30(1):5-12. doi: 10.1002/jcla.21802. Epub 2014 Oct 3.

本文引用的文献

2
Cumulative incidence of false-positive results in repeated, multimodal cancer screening.
Ann Fam Med. 2009 May-Jun;7(3):212-22. doi: 10.1370/afm.942.
4
Prostate-specific antigen velocity and prostate cancer gleason grade and stage.
Cancer. 2007 Apr 15;109(8):1689-95. doi: 10.1002/cncr.22558.
6
A multivariate logistic regression equation to screen for diabetes: development and validation.
Diabetes Care. 2002 Nov;25(11):1999-2003. doi: 10.2337/diacare.25.11.1999.
7
Internal validation of predictive models: efficiency of some procedures for logistic regression analysis.
J Clin Epidemiol. 2001 Aug;54(8):774-81. doi: 10.1016/s0895-4356(01)00341-9.
8
Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.
Control Clin Trials. 2000 Dec;21(6 Suppl):273S-309S. doi: 10.1016/s0197-2456(00)00098-2.
10
Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets.
Stat Med. 2000 Apr 30;19(8):1059-79. doi: 10.1002/(sici)1097-0258(20000430)19:8<1059::aid-sim412>3.0.co;2-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验