Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, Japan.
Chromosome Res. 2012 Jan;20(1):111-25. doi: 10.1007/s10577-011-9268-6.
The genus Tokudaia comprises three species, two of which have lost their Y chromosome and have an XO/XO sex chromosome constitution. Although Tokudaia muenninki (Okinawa spiny rat) retains the Y chromosome, both sex chromosomes are unusually large. We conducted a molecular cytogenetic analysis to characterize the sex chromosomes of T. muenninki. Using cross-species fluorescence in situ hybridization (Zoo-FISH), we found that both short arms of the T. muenninki sex chromosomes were painted by probes from mouse chromosomes 11 and 16. Comparative genomic hybridization analysis was unable to detect sex-specific regions in the sex chromosomes because both sex probes highlighted the large heterochromatic blocks on the Y chromosome as well as five autosomal pairs. We then performed comparative FISH mapping using 29 mouse complementary DNA (cDNA) clones of the 22 X-linked genes and the seven genes linked to mouse chromosome 11 (whose homologue had fused to the sex chromosomes), and FISH mapping using two T. muenninki cDNA clones of the Y-linked genes. This analysis revealed that the ancestral gene order on the long arm of the X chromosome and the centromeric region of the short arm of the Y chromosome were conserved. Whereas six of the mouse chromosome 11 genes were also mapped to Xp and Yp, in addition, one gene, CBX2, was also mapped to Xp, Yp, and chromosome 14 in T. muenninki. CBX2 is the candidate gene for the novel sex determination system in the two other species of Tokudaia, which lack a Y chromosome and SRY gene. Overall, these results indicated that the Y chromosome of T. muenninki avoided a loss event, which occurred in an ancestral lineage of T. osimensis and T. tokunoshimensis, through fusion with an autosome. Despite retaining the Y chromosome, sex determination in T. muenninki might not follow the usual mammalian pattern and deserves further investigation.
豆齿鼠属包括三个物种,其中两个物种失去了 Y 染色体,具有 XO/XO 性染色体组成。尽管 Tokudaia muenninki(冲绳刺鼠)保留了 Y 染色体,但两条性染色体都非常大。我们进行了分子细胞遗传学分析,以确定 T. muenninki 的性染色体特征。通过跨物种荧光原位杂交(Zoo-FISH),我们发现 T. muenninki 性染色体的短臂均被来自小鼠染色体 11 和 16 的探针标记。比较基因组杂交分析未能检测到性染色体上的性别特异性区域,因为两种性探针都突出了 Y 染色体上的大异染色质块以及五对常染色体。然后,我们使用 29 个小鼠 cDNA(cDNA)克隆的 22 个 X 连锁基因和与小鼠染色体 11 连锁的 7 个基因(其同源基因融合到性染色体上)进行了比较 FISH 作图,并使用两个 T. muenninki 的 Y 连锁基因 cDNA 克隆进行了 FISH 作图。该分析表明,X 染色体长臂上的祖先基因顺序和 Y 染色体短臂的着丝粒区域得以保守。尽管六个小鼠染色体 11 基因也被映射到 Xp 和 Yp 上,此外,一个基因 CBX2 也被映射到 Xp、Yp 和 T. muenninki 的 14 号染色体上。CBX2 是 Tokudaia 属的另外两个物种中新型性别决定系统的候选基因,这两个物种缺乏 Y 染色体和 SRY 基因。总的来说,这些结果表明,T. muenninki 的 Y 染色体通过与一个常染色体融合,避免了在 T. osimensis 和 T. tokunoshimensis 的祖先谱系中发生的丢失事件。尽管保留了 Y 染色体,但 T. muenninki 的性别决定可能不符合通常的哺乳动物模式,值得进一步研究。