School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
Nano Lett. 2012 Feb 8;12(2):602-9. doi: 10.1021/nl203325s. Epub 2012 Jan 9.
In this work, we report the design, fabrication, and characterization of novel biochemical sensors consisting of nanoscale grooves and slits milled in a metal film to form two-arm, three-beam, planar plasmonic interferometers. By integrating thousands of plasmonic interferometers per square millimeter with a microfluidic system, we demonstrate a sensor able to detect physiological concentrations of glucose in water over a broad wavelength range (400-800 nm). A wavelength sensitivity between 370 and 630 nm/RIU (RIU, refractive index units), a relative intensity change between ~10(3) and 10(6) %/RIU, and a resolution of ~3 × 10(-7) in refractive index change were experimentally measured using typical sensing volumes as low as 20 fL. These results show that multispectral plasmonic interferometry is a promising approach for the development of high-throughput, real-time, and extremely compact biochemical sensors.
在这项工作中,我们报告了新型生化传感器的设计、制造和特性,该传感器由金属薄膜中铣出的纳米级凹槽和狭缝形成,形成了双臂、三梁、平面等离子体干涉仪。通过将每平方毫米数千个等离子体干涉仪与微流控系统集成,我们展示了一种能够在宽波长范围(400-800nm)内检测水中生理浓度葡萄糖的传感器。实验测量得到的波长灵敏度在 370nm 至 630nm/RIU(RIU,折射率单位)之间,相对光强变化在10(3)至 10(6) %/RIU 之间,折射率变化的分辨率约为3×10(-7),使用典型的传感体积低至 20fL。这些结果表明,多光谱等离子体干涉测量法是开发高通量、实时和极其紧凑的生化传感器的一种很有前途的方法。