Suppr超能文献

基于机器学习设计的低成本、移动等离子体阅读器的计算传感。

Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning.

机构信息

Electrical Engineering Department, ‡Bioengineering Department, and §California NanoSystems Institute (CNSI), University of California , Los Angeles, California 90095, United States.

出版信息

ACS Nano. 2017 Feb 28;11(2):2266-2274. doi: 10.1021/acsnano.7b00105. Epub 2017 Feb 1.

Abstract

Plasmonic sensors have been used for a wide range of biological and chemical sensing applications. Emerging nanofabrication techniques have enabled these sensors to be cost-effectively mass manufactured onto various types of substrates. To accompany these advances, major improvements in sensor read-out devices must also be achieved to fully realize the broad impact of plasmonic nanosensors. Here, we propose a machine learning framework which can be used to design low-cost and mobile multispectral plasmonic readers that do not use traditionally employed bulky and expensive stabilized light sources or high-resolution spectrometers. By training a feature selection model over a large set of fabricated plasmonic nanosensors, we select the optimal set of illumination light-emitting diodes needed to create a minimum-error refractive index prediction model, which statistically takes into account the varied spectral responses and fabrication-induced variability of a given sensor design. This computational sensing approach was experimentally validated using a modular mobile plasmonic reader. We tested different plasmonic sensors with hexagonal and square periodicity nanohole arrays and revealed that the optimal illumination bands differ from those that are "intuitively" selected based on the spectral features of the sensor, e.g., transmission peaks or valleys. This framework provides a universal tool for the plasmonics community to design low-cost and mobile multispectral readers, helping the translation of nanosensing technologies to various emerging applications such as wearable sensing, personalized medicine, and point-of-care diagnostics. Beyond plasmonics, other types of sensors that operate based on spectral changes can broadly benefit from this approach, including e.g., aptamer-enabled nanoparticle assays and graphene-based sensors, among others.

摘要

等离子体激元传感器已被广泛应用于生物和化学传感领域。新兴的纳米制造技术使这些传感器能够以具有成本效益的方式大规模制造到各种类型的衬底上。为了配合这些进展,还必须在传感器读出设备方面取得重大改进,以充分实现等离子体纳米传感器的广泛影响。在这里,我们提出了一个机器学习框架,可以用来设计低成本和移动的多光谱等离子体读出器,而不需要使用传统的体积庞大且昂贵的稳定光源或高分辨率光谱仪。通过在一组大量制造的等离子体纳米传感器上训练特征选择模型,我们选择了创建最小误差折射率预测模型所需的最佳照明发光二极管集,该模型从统计学上考虑了给定传感器设计的光谱响应和制造引起的变化。通过使用模块化的移动等离子体读出器对这种计算传感方法进行了实验验证。我们测试了具有六方和四方周期性纳米孔阵列的不同等离子体传感器,并揭示了最佳照明波段与基于传感器光谱特征(例如透射峰或谷)“直观”选择的波段不同。该框架为等离子体研究人员提供了一种通用工具,用于设计低成本和移动的多光谱读出器,有助于将纳米传感技术转化为各种新兴应用,如可穿戴传感、个性化医疗和即时诊断。除了等离子体学之外,其他基于光谱变化的传感器也可以广泛受益于这种方法,例如基于适配体的纳米粒子分析和基于石墨烯的传感器等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74bc/5451292/9dc40d94449d/nihms859551f1.jpg

相似文献

2
Photonic crystal and plasmonic nanohole based label-free biodetection.基于光子晶体和等离子体纳米孔的无标记生物检测。
Biosens Bioelectron. 2019 May 1;132:196-202. doi: 10.1016/j.bios.2019.02.047. Epub 2019 Feb 27.
8
Recent advances in plasmonic sensors.等离子体传感器的最新进展。
Sensors (Basel). 2014 May 5;14(5):7959-73. doi: 10.3390/s140507959.
10
Plasmonic Metamaterials for Nanochemistry and Sensing.用于纳米化学与传感的表面等离激元超材料
Acc Chem Res. 2019 Nov 19;52(11):3018-3028. doi: 10.1021/acs.accounts.9b00325. Epub 2019 Nov 4.

引用本文的文献

2
Computational spectrometers enabled by nanophotonics and deep learning.由纳米光子学和深度学习驱动的计算光谱仪。
Nanophotonics. 2022 Jan 24;11(11):2507-2529. doi: 10.1515/nanoph-2021-0636. eCollection 2022 Jun.
3
Roadmap on Label-Free Super-Resolution Imaging.无标记超分辨率成像路线图
Laser Photon Rev. 2023 Dec;17(12). doi: 10.1002/lpor.202200029. Epub 2023 Oct 30.
5
Engineering Innovative Interfaces for Point-of-Care Diagnostics.用于即时诊断的工程创新界面。
Curr Opin Colloid Interface Sci. 2023 Jun 8:101718. doi: 10.1016/j.cocis.2023.101718.
9
Plasmonic nanosensors for point-of-care biomarker detection.用于即时护理生物标志物检测的等离子体纳米传感器。
Mater Today Bio. 2022 Apr 16;14:100263. doi: 10.1016/j.mtbio.2022.100263. eCollection 2022 Mar.
10
Decoding Optical Data with Machine Learning.利用机器学习解码光学数据。
Laser Photon Rev. 2021 Feb;15(2). doi: 10.1002/lpor.202000422. Epub 2020 Dec 23.

本文引用的文献

1
Flexible Plasmonic Sensors.柔性等离子体传感器
IEEE J Sel Top Quantum Electron. 2016 Jul-Aug;22(4). doi: 10.1109/JSTQE.2015.2507363. Epub 2016 Apr 1.
2
Aptamer-based 'point-of-care testing'.基于适配体的“即时检测”。
Biotechnol Adv. 2016 May-Jun;34(3):198-208. doi: 10.1016/j.biotechadv.2016.02.003. Epub 2016 Feb 10.
8
Nanostructured sensors for biomedical applications--a current perspective.用于生物医学应用的纳米结构传感器——当前视角
Curr Opin Biotechnol. 2015 Aug;34:118-24. doi: 10.1016/j.copbio.2014.11.019. Epub 2015 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验