Electrical Engineering Department, ‡Bioengineering Department, and §California NanoSystems Institute (CNSI), University of California , Los Angeles, California 90095, United States.
ACS Nano. 2017 Feb 28;11(2):2266-2274. doi: 10.1021/acsnano.7b00105. Epub 2017 Feb 1.
Plasmonic sensors have been used for a wide range of biological and chemical sensing applications. Emerging nanofabrication techniques have enabled these sensors to be cost-effectively mass manufactured onto various types of substrates. To accompany these advances, major improvements in sensor read-out devices must also be achieved to fully realize the broad impact of plasmonic nanosensors. Here, we propose a machine learning framework which can be used to design low-cost and mobile multispectral plasmonic readers that do not use traditionally employed bulky and expensive stabilized light sources or high-resolution spectrometers. By training a feature selection model over a large set of fabricated plasmonic nanosensors, we select the optimal set of illumination light-emitting diodes needed to create a minimum-error refractive index prediction model, which statistically takes into account the varied spectral responses and fabrication-induced variability of a given sensor design. This computational sensing approach was experimentally validated using a modular mobile plasmonic reader. We tested different plasmonic sensors with hexagonal and square periodicity nanohole arrays and revealed that the optimal illumination bands differ from those that are "intuitively" selected based on the spectral features of the sensor, e.g., transmission peaks or valleys. This framework provides a universal tool for the plasmonics community to design low-cost and mobile multispectral readers, helping the translation of nanosensing technologies to various emerging applications such as wearable sensing, personalized medicine, and point-of-care diagnostics. Beyond plasmonics, other types of sensors that operate based on spectral changes can broadly benefit from this approach, including e.g., aptamer-enabled nanoparticle assays and graphene-based sensors, among others.
等离子体激元传感器已被广泛应用于生物和化学传感领域。新兴的纳米制造技术使这些传感器能够以具有成本效益的方式大规模制造到各种类型的衬底上。为了配合这些进展,还必须在传感器读出设备方面取得重大改进,以充分实现等离子体纳米传感器的广泛影响。在这里,我们提出了一个机器学习框架,可以用来设计低成本和移动的多光谱等离子体读出器,而不需要使用传统的体积庞大且昂贵的稳定光源或高分辨率光谱仪。通过在一组大量制造的等离子体纳米传感器上训练特征选择模型,我们选择了创建最小误差折射率预测模型所需的最佳照明发光二极管集,该模型从统计学上考虑了给定传感器设计的光谱响应和制造引起的变化。通过使用模块化的移动等离子体读出器对这种计算传感方法进行了实验验证。我们测试了具有六方和四方周期性纳米孔阵列的不同等离子体传感器,并揭示了最佳照明波段与基于传感器光谱特征(例如透射峰或谷)“直观”选择的波段不同。该框架为等离子体研究人员提供了一种通用工具,用于设计低成本和移动的多光谱读出器,有助于将纳米传感技术转化为各种新兴应用,如可穿戴传感、个性化医疗和即时诊断。除了等离子体学之外,其他基于光谱变化的传感器也可以广泛受益于这种方法,例如基于适配体的纳米粒子分析和基于石墨烯的传感器等。