Suppr超能文献

多维标度用于匹配低分辨率人脸图像。

Multidimensional scaling for matching low-resolution face images.

机构信息

Department of Computer Science and Engineering, University of Notre Dame, 384 Fitzpatrick Hall of Engineering, Notre Dame, IN 46556, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Oct;34(10):2019-30. doi: 10.1109/TPAMI.2011.278.

Abstract

Face recognition performance degrades considerably when the input images are of Low Resolution (LR), as is often the case for images taken by surveillance cameras or from a large distance. In this paper, we propose a novel approach for matching low-resolution probe images with higher resolution gallery images, which are often available during enrollment, using Multidimensional Scaling (MDS). The ideal scenario is when both the probe and gallery images are of high enough resolution to discriminate across different subjects. The proposed method simultaneously embeds the low-resolution probe images and the high-resolution gallery images in a common space such that the distance between them in the transformed space approximates the distance had both the images been of high resolution. The two mappings are learned simultaneously from high-resolution training images using an iterative majorization algorithm. Extensive evaluation of the proposed approach on the Multi-PIE data set with probe image resolution as low as 8 6 pixels illustrates the usefulness of the method. We show that the proposed approach improves the matching performance significantly as compared to performing matching in the low-resolution domain or using super-resolution techniques to obtain a higher resolution test image prior to recognition. Experiments on low-resolution surveillance images from the Surveillance Cameras Face Database further highlight the effectiveness of the approach.

摘要

当输入图像的分辨率较低(LR)时,人脸识别性能会显著下降,这种情况通常发生在监控摄像机拍摄的图像或远距离拍摄的图像中。在本文中,我们提出了一种新的方法,用于使用多维缩放(MDS)匹配低分辨率探测图像和高分辨率图库图像,这些图像通常在注册时可用。理想情况下,探测图像和图库图像的分辨率都足够高,可以区分不同的主体。所提出的方法同时将低分辨率探测图像和高分辨率图库图像嵌入到公共空间中,使得它们在变换空间中的距离近似于两个图像都具有高分辨率时的距离。这两个映射是使用迭代主成分算法从高分辨率训练图像中同时学习得到的。在 Multi-PIE 数据集上进行的对所提出的方法的广泛评估,其探测图像分辨率低至 86 像素,说明了该方法的有用性。我们表明,与在低分辨率域中进行匹配或使用超分辨率技术在识别之前获得更高分辨率的测试图像相比,所提出的方法显著提高了匹配性能。在来自 Surveillance Cameras Face Database 的低分辨率监控图像上进行的实验进一步突出了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验