State Key Laboratory of Integrated Services Networks, Xidian University, Xiàn, China.
IEEE Trans Image Process. 2013 Oct;22(10):3807-17. doi: 10.1109/TIP.2013.2262286. Epub 2013 May 13.
Manifold learning concerns the local manifold structure of high dimensional data, and many related algorithms are developed to improve image classification performance. None of them, however, consider both the relationships among pixels in images and the geometrical properties of various images during learning the reduced space. In this paper, we propose a linear approach, called two-dimensional maximum local variation (2DMLV), for face recognition. In 2DMLV, we encode the relationships among pixels in images using the image Euclidean distance instead of conventional Euclidean distance in estimating the variation of values of images, and then incorporate the local variation, which characterizes the diversity of images and discriminating information, into the objective function of dimensionality reduction. Extensive experiments demonstrate the effectiveness of our approach.
流形学习关注高维数据的局部流形结构,并且已经开发出许多相关算法来提高图像分类性能。然而,它们都没有在学习降维空间时考虑图像中像素之间的关系和各种图像的几何特性。在本文中,我们提出了一种线性方法,称为二维最大局部变化(2DMLV),用于人脸识别。在 2DMLV 中,我们使用图像欧几里得距离来编码图像中像素之间的关系,而不是在估计图像值的变化时使用传统的欧几里得距离,然后将局部变化(特征图像的多样性和判别信息)合并到降维的目标函数中。大量实验证明了我们方法的有效性。