Department of Geology, University of Toronto, Toronto, Ontario, Canada.
Environ Sci Technol. 2012 Feb 7;46(3):1731-8. doi: 10.1021/es202792x. Epub 2012 Jan 19.
Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = -6.7‰ ± 0.4‰, and -4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = -3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ(13)C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.
氯代乙稀通常存在于受污染的地下水中。修复策略主要集中在转化过程上,这些过程最终将导致无毒产品的产生。这些策略的一个主要关注点是不完全脱氯和有毒副产物(顺式-1,2-二氯乙烷(cDCE),氯乙烯(VC))积累的可能性。乙烯质量平衡可以用作评估脱氯效果的直接指标。然而,影响乙烯的微生物过程尚未得到很好的描述,较差的质量平衡可能反映了乙烯的生物转化而不是不完全脱氯。在好氧系统中,通常会观察到乙烯的微生物降解,但在厌氧系统中报道的情况较少。与这些过程相关的同位素富集因子的信息有限。使用化合物特异性同位素分析(CSIA),我们确定了从佐治亚州萨凡纳河站点的双子湖湿地地区采集的培养物中,在厌氧微宇宙中(ε=-6.7‰±0.4‰和-4.0‰±0.8‰)和在好氧微宇宙中(ε=-3.0‰±0.3‰)与微生物降解乙烯相关的富集因子。来自佐治亚州萨凡纳河站点的双子湖湿地地区采集的培养物,以及好氧微宇宙中(ε=-3.0‰±0.3‰)来自 Mycobacterium sp. strain JS60。在厌氧和有氧条件下,CSIA 可用于确定除了氯代乙稀的生物降解之外,乙烯是否发生了生物转化。使用在进行生物修复的污染现场确定的乙烯和氯代乙稀的δ(13)C 值,本研究展示了如何通过区分还原脱氯过程中的实际质量平衡不足与与乙烯的生物转化有关的表观缺乏质量平衡,来减少现场的不确定性和风险。